Mercurial > vim
view src/regexp_bt.c @ 20193:cf13b26be258 v8.2.0652
patch 8.2.0652: compiler warning for char conversion
Commit: https://github.com/vim/vim/commit/909ed7e902d97054262fb55b28f5e855428ab7fe
Author: Bram Moolenaar <Bram@vim.org>
Date: Mon Apr 27 23:16:41 2020 +0200
patch 8.2.0652: compiler warning for char conversion
Problem: Compiler warning for char conversion.
Solution: Use unsigned char buffer.
author | Bram Moolenaar <Bram@vim.org> |
---|---|
date | Mon, 27 Apr 2020 23:30:04 +0200 |
parents | aadd1cae2ff5 |
children | 9064044fd4f6 |
line wrap: on
line source
/* vi:set ts=8 sts=4 sw=4 noet: * * Backtracking regular expression implementation. * * This file is included in "regexp.c". * * NOTICE: * * This is NOT the original regular expression code as written by Henry * Spencer. This code has been modified specifically for use with the VIM * editor, and should not be used separately from Vim. If you want a good * regular expression library, get the original code. The copyright notice * that follows is from the original. * * END NOTICE * * Copyright (c) 1986 by University of Toronto. * Written by Henry Spencer. Not derived from licensed software. * * Permission is granted to anyone to use this software for any * purpose on any computer system, and to redistribute it freely, * subject to the following restrictions: * * 1. The author is not responsible for the consequences of use of * this software, no matter how awful, even if they arise * from defects in it. * * 2. The origin of this software must not be misrepresented, either * by explicit claim or by omission. * * 3. Altered versions must be plainly marked as such, and must not * be misrepresented as being the original software. * * Beware that some of this code is subtly aware of the way operator * precedence is structured in regular expressions. Serious changes in * regular-expression syntax might require a total rethink. * * Changes have been made by Tony Andrews, Olaf 'Rhialto' Seibert, Robert * Webb, Ciaran McCreesh and Bram Moolenaar. * Named character class support added by Walter Briscoe (1998 Jul 01) */ /* * The "internal use only" fields in regexp.h are present to pass info from * compile to execute that permits the execute phase to run lots faster on * simple cases. They are: * * regstart char that must begin a match; NUL if none obvious; Can be a * multi-byte character. * reganch is the match anchored (at beginning-of-line only)? * regmust string (pointer into program) that match must include, or NULL * regmlen length of regmust string * regflags RF_ values or'ed together * * Regstart and reganch permit very fast decisions on suitable starting points * for a match, cutting down the work a lot. Regmust permits fast rejection * of lines that cannot possibly match. The regmust tests are costly enough * that vim_regcomp() supplies a regmust only if the r.e. contains something * potentially expensive (at present, the only such thing detected is * or + * at the start of the r.e., which can involve a lot of backup). Regmlen is * supplied because the test in vim_regexec() needs it and vim_regcomp() is * computing it anyway. */ /* * Structure for regexp "program". This is essentially a linear encoding * of a nondeterministic finite-state machine (aka syntax charts or * "railroad normal form" in parsing technology). Each node is an opcode * plus a "next" pointer, possibly plus an operand. "Next" pointers of * all nodes except BRANCH and BRACES_COMPLEX implement concatenation; a "next" * pointer with a BRANCH on both ends of it is connecting two alternatives. * (Here we have one of the subtle syntax dependencies: an individual BRANCH * (as opposed to a collection of them) is never concatenated with anything * because of operator precedence). The "next" pointer of a BRACES_COMPLEX * node points to the node after the stuff to be repeated. * The operand of some types of node is a literal string; for others, it is a * node leading into a sub-FSM. In particular, the operand of a BRANCH node * is the first node of the branch. * (NB this is *not* a tree structure: the tail of the branch connects to the * thing following the set of BRANCHes.) * * pattern is coded like: * * +-----------------+ * | V * <aa>\|<bb> BRANCH <aa> BRANCH <bb> --> END * | ^ | ^ * +------+ +----------+ * * * +------------------+ * V | * <aa>* BRANCH BRANCH <aa> --> BACK BRANCH --> NOTHING --> END * | | ^ ^ * | +---------------+ | * +---------------------------------------------+ * * * +----------------------+ * V | * <aa>\+ BRANCH <aa> --> BRANCH --> BACK BRANCH --> NOTHING --> END * | | ^ ^ * | +-----------+ | * +--------------------------------------------------+ * * * +-------------------------+ * V | * <aa>\{} BRANCH BRACE_LIMITS --> BRACE_COMPLEX <aa> --> BACK END * | | ^ * | +----------------+ * +-----------------------------------------------+ * * * <aa>\@!<bb> BRANCH NOMATCH <aa> --> END <bb> --> END * | | ^ ^ * | +----------------+ | * +--------------------------------+ * * +---------+ * | V * \z[abc] BRANCH BRANCH a BRANCH b BRANCH c BRANCH NOTHING --> END * | | | | ^ ^ * | | | +-----+ | * | | +----------------+ | * | +---------------------------+ | * +------------------------------------------------------+ * * They all start with a BRANCH for "\|" alternatives, even when there is only * one alternative. */ /* * The opcodes are: */ // definition number opnd? meaning #define END 0 // End of program or NOMATCH operand. #define BOL 1 // Match "" at beginning of line. #define EOL 2 // Match "" at end of line. #define BRANCH 3 // node Match this alternative, or the // next... #define BACK 4 // Match "", "next" ptr points backward. #define EXACTLY 5 // str Match this string. #define NOTHING 6 // Match empty string. #define STAR 7 // node Match this (simple) thing 0 or more // times. #define PLUS 8 // node Match this (simple) thing 1 or more // times. #define MATCH 9 // node match the operand zero-width #define NOMATCH 10 // node check for no match with operand #define BEHIND 11 // node look behind for a match with operand #define NOBEHIND 12 // node look behind for no match with operand #define SUBPAT 13 // node match the operand here #define BRACE_SIMPLE 14 // node Match this (simple) thing between m and // n times (\{m,n\}). #define BOW 15 // Match "" after [^a-zA-Z0-9_] #define EOW 16 // Match "" at [^a-zA-Z0-9_] #define BRACE_LIMITS 17 // nr nr define the min & max for BRACE_SIMPLE // and BRACE_COMPLEX. #define NEWL 18 // Match line-break #define BHPOS 19 // End position for BEHIND or NOBEHIND // character classes: 20-48 normal, 50-78 include a line-break #define ADD_NL 30 #define FIRST_NL ANY + ADD_NL #define ANY 20 // Match any one character. #define ANYOF 21 // str Match any character in this string. #define ANYBUT 22 // str Match any character not in this // string. #define IDENT 23 // Match identifier char #define SIDENT 24 // Match identifier char but no digit #define KWORD 25 // Match keyword char #define SKWORD 26 // Match word char but no digit #define FNAME 27 // Match file name char #define SFNAME 28 // Match file name char but no digit #define PRINT 29 // Match printable char #define SPRINT 30 // Match printable char but no digit #define WHITE 31 // Match whitespace char #define NWHITE 32 // Match non-whitespace char #define DIGIT 33 // Match digit char #define NDIGIT 34 // Match non-digit char #define HEX 35 // Match hex char #define NHEX 36 // Match non-hex char #define OCTAL 37 // Match octal char #define NOCTAL 38 // Match non-octal char #define WORD 39 // Match word char #define NWORD 40 // Match non-word char #define HEAD 41 // Match head char #define NHEAD 42 // Match non-head char #define ALPHA 43 // Match alpha char #define NALPHA 44 // Match non-alpha char #define LOWER 45 // Match lowercase char #define NLOWER 46 // Match non-lowercase char #define UPPER 47 // Match uppercase char #define NUPPER 48 // Match non-uppercase char #define LAST_NL NUPPER + ADD_NL #define WITH_NL(op) ((op) >= FIRST_NL && (op) <= LAST_NL) #define MOPEN 80 // -89 Mark this point in input as start of // \( subexpr. MOPEN + 0 marks start of // match. #define MCLOSE 90 // -99 Analogous to MOPEN. MCLOSE + 0 marks // end of match. #define BACKREF 100 // -109 node Match same string again \1-\9 #ifdef FEAT_SYN_HL # define ZOPEN 110 // -119 Mark this point in input as start of // \z( subexpr. # define ZCLOSE 120 // -129 Analogous to ZOPEN. # define ZREF 130 // -139 node Match external submatch \z1-\z9 #endif #define BRACE_COMPLEX 140 // -149 node Match nodes between m & n times #define NOPEN 150 // Mark this point in input as start of // \%( subexpr. #define NCLOSE 151 // Analogous to NOPEN. #define MULTIBYTECODE 200 // mbc Match one multi-byte character #define RE_BOF 201 // Match "" at beginning of file. #define RE_EOF 202 // Match "" at end of file. #define CURSOR 203 // Match location of cursor. #define RE_LNUM 204 // nr cmp Match line number #define RE_COL 205 // nr cmp Match column number #define RE_VCOL 206 // nr cmp Match virtual column number #define RE_MARK 207 // mark cmp Match mark position #define RE_VISUAL 208 // Match Visual area #define RE_COMPOSING 209 // any composing characters /* * Flags to be passed up and down. */ #define HASWIDTH 0x1 // Known never to match null string. #define SIMPLE 0x2 // Simple enough to be STAR/PLUS operand. #define SPSTART 0x4 // Starts with * or +. #define HASNL 0x8 // Contains some \n. #define HASLOOKBH 0x10 // Contains "\@<=" or "\@<!". #define WORST 0 // Worst case. static int num_complex_braces; // Complex \{...} count static char_u *regcode; // Code-emit pointer, or JUST_CALC_SIZE static long regsize; // Code size. static int reg_toolong; // TRUE when offset out of range static char_u had_endbrace[NSUBEXP]; // flags, TRUE if end of () found static long brace_min[10]; // Minimums for complex brace repeats static long brace_max[10]; // Maximums for complex brace repeats static int brace_count[10]; // Current counts for complex brace repeats static int one_exactly = FALSE; // only do one char for EXACTLY // When making changes to classchars also change nfa_classcodes. static char_u *classchars = (char_u *)".iIkKfFpPsSdDxXoOwWhHaAlLuU"; static int classcodes[] = { ANY, IDENT, SIDENT, KWORD, SKWORD, FNAME, SFNAME, PRINT, SPRINT, WHITE, NWHITE, DIGIT, NDIGIT, HEX, NHEX, OCTAL, NOCTAL, WORD, NWORD, HEAD, NHEAD, ALPHA, NALPHA, LOWER, NLOWER, UPPER, NUPPER }; /* * When regcode is set to this value, code is not emitted and size is computed * instead. */ #define JUST_CALC_SIZE ((char_u *) -1) // Values for rs_state in regitem_T. typedef enum regstate_E { RS_NOPEN = 0 // NOPEN and NCLOSE , RS_MOPEN // MOPEN + [0-9] , RS_MCLOSE // MCLOSE + [0-9] #ifdef FEAT_SYN_HL , RS_ZOPEN // ZOPEN + [0-9] , RS_ZCLOSE // ZCLOSE + [0-9] #endif , RS_BRANCH // BRANCH , RS_BRCPLX_MORE // BRACE_COMPLEX and trying one more match , RS_BRCPLX_LONG // BRACE_COMPLEX and trying longest match , RS_BRCPLX_SHORT // BRACE_COMPLEX and trying shortest match , RS_NOMATCH // NOMATCH , RS_BEHIND1 // BEHIND / NOBEHIND matching rest , RS_BEHIND2 // BEHIND / NOBEHIND matching behind part , RS_STAR_LONG // STAR/PLUS/BRACE_SIMPLE longest match , RS_STAR_SHORT // STAR/PLUS/BRACE_SIMPLE shortest match } regstate_T; /* * Structure used to save the current input state, when it needs to be * restored after trying a match. Used by reg_save() and reg_restore(). * Also stores the length of "backpos". */ typedef struct { union { char_u *ptr; // rex.input pointer, for single-line regexp lpos_T pos; // rex.input pos, for multi-line regexp } rs_u; int rs_len; } regsave_T; // struct to save start/end pointer/position in for \(\) typedef struct { union { char_u *ptr; lpos_T pos; } se_u; } save_se_T; // used for BEHIND and NOBEHIND matching typedef struct regbehind_S { regsave_T save_after; regsave_T save_behind; int save_need_clear_subexpr; save_se_T save_start[NSUBEXP]; save_se_T save_end[NSUBEXP]; } regbehind_T; /* * When there are alternatives a regstate_T is put on the regstack to remember * what we are doing. * Before it may be another type of item, depending on rs_state, to remember * more things. */ typedef struct regitem_S { regstate_T rs_state; // what we are doing, one of RS_ above short rs_no; // submatch nr or BEHIND/NOBEHIND char_u *rs_scan; // current node in program union { save_se_T sesave; regsave_T regsave; } rs_un; // room for saving rex.input } regitem_T; // used for STAR, PLUS and BRACE_SIMPLE matching typedef struct regstar_S { int nextb; // next byte int nextb_ic; // next byte reverse case long count; long minval; long maxval; } regstar_T; // used to store input position when a BACK was encountered, so that we now if // we made any progress since the last time. typedef struct backpos_S { char_u *bp_scan; // "scan" where BACK was encountered regsave_T bp_pos; // last input position } backpos_T; /* * "regstack" and "backpos" are used by regmatch(). They are kept over calls * to avoid invoking malloc() and free() often. * "regstack" is a stack with regitem_T items, sometimes preceded by regstar_T * or regbehind_T. * "backpos_T" is a table with backpos_T for BACK */ static garray_T regstack = {0, 0, 0, 0, NULL}; static garray_T backpos = {0, 0, 0, 0, NULL}; static regsave_T behind_pos; /* * Both for regstack and backpos tables we use the following strategy of * allocation (to reduce malloc/free calls): * - Initial size is fairly small. * - When needed, the tables are grown bigger (8 times at first, double after * that). * - After executing the match we free the memory only if the array has grown. * Thus the memory is kept allocated when it's at the initial size. * This makes it fast while not keeping a lot of memory allocated. * A three times speed increase was observed when using many simple patterns. */ #define REGSTACK_INITIAL 2048 #define BACKPOS_INITIAL 64 /* * Opcode notes: * * BRANCH The set of branches constituting a single choice are hooked * together with their "next" pointers, since precedence prevents * anything being concatenated to any individual branch. The * "next" pointer of the last BRANCH in a choice points to the * thing following the whole choice. This is also where the * final "next" pointer of each individual branch points; each * branch starts with the operand node of a BRANCH node. * * BACK Normal "next" pointers all implicitly point forward; BACK * exists to make loop structures possible. * * STAR,PLUS '=', and complex '*' and '+', are implemented as circular * BRANCH structures using BACK. Simple cases (one character * per match) are implemented with STAR and PLUS for speed * and to minimize recursive plunges. * * BRACE_LIMITS This is always followed by a BRACE_SIMPLE or BRACE_COMPLEX * node, and defines the min and max limits to be used for that * node. * * MOPEN,MCLOSE ...are numbered at compile time. * ZOPEN,ZCLOSE ...ditto */ /* * A node is one char of opcode followed by two chars of "next" pointer. * "Next" pointers are stored as two 8-bit bytes, high order first. The * value is a positive offset from the opcode of the node containing it. * An operand, if any, simply follows the node. (Note that much of the * code generation knows about this implicit relationship.) * * Using two bytes for the "next" pointer is vast overkill for most things, * but allows patterns to get big without disasters. */ #define OP(p) ((int)*(p)) #define NEXT(p) (((*((p) + 1) & 0377) << 8) + (*((p) + 2) & 0377)) #define OPERAND(p) ((p) + 3) // Obtain an operand that was stored as four bytes, MSB first. #define OPERAND_MIN(p) (((long)(p)[3] << 24) + ((long)(p)[4] << 16) \ + ((long)(p)[5] << 8) + (long)(p)[6]) // Obtain a second operand stored as four bytes. #define OPERAND_MAX(p) OPERAND_MIN((p) + 4) // Obtain a second single-byte operand stored after a four bytes operand. #define OPERAND_CMP(p) (p)[7] static char_u *reg(int paren, int *flagp); #ifdef BT_REGEXP_DUMP static void regdump(char_u *, bt_regprog_T *); #endif static int re_num_cmp(long_u val, char_u *scan); #ifdef DEBUG static char_u *regprop(char_u *); static int regnarrate = 0; #endif /* * Setup to parse the regexp. Used once to get the length and once to do it. */ static void regcomp_start( char_u *expr, int re_flags) // see vim_regcomp() { initchr(expr); if (re_flags & RE_MAGIC) reg_magic = MAGIC_ON; else reg_magic = MAGIC_OFF; reg_string = (re_flags & RE_STRING); reg_strict = (re_flags & RE_STRICT); get_cpo_flags(); num_complex_braces = 0; regnpar = 1; CLEAR_FIELD(had_endbrace); #ifdef FEAT_SYN_HL regnzpar = 1; re_has_z = 0; #endif regsize = 0L; reg_toolong = FALSE; regflags = 0; #if defined(FEAT_SYN_HL) || defined(PROTO) had_eol = FALSE; #endif } /* * Return TRUE if MULTIBYTECODE should be used instead of EXACTLY for * character "c". */ static int use_multibytecode(int c) { return has_mbyte && (*mb_char2len)(c) > 1 && (re_multi_type(peekchr()) != NOT_MULTI || (enc_utf8 && utf_iscomposing(c))); } /* * Emit (if appropriate) a byte of code */ static void regc(int b) { if (regcode == JUST_CALC_SIZE) regsize++; else *regcode++ = b; } /* * Emit (if appropriate) a multi-byte character of code */ static void regmbc(int c) { if (!has_mbyte && c > 0xff) return; if (regcode == JUST_CALC_SIZE) regsize += (*mb_char2len)(c); else regcode += (*mb_char2bytes)(c, regcode); } #define REGMBC(x) regmbc(x); #define CASEMBC(x) case x: /* * Produce the bytes for equivalence class "c". * Currently only handles latin1, latin9 and utf-8. * NOTE: When changing this function, also change nfa_emit_equi_class() */ static void reg_equi_class(int c) { if (enc_utf8 || STRCMP(p_enc, "latin1") == 0 || STRCMP(p_enc, "iso-8859-15") == 0) { #ifdef EBCDIC int i; // This might be slower than switch/case below. for (i = 0; i < 16; i++) { if (vim_strchr(EQUIVAL_CLASS_C[i], c) != NULL) { char *p = EQUIVAL_CLASS_C[i]; while (*p != 0) regmbc(*p++); return; } } #else switch (c) { // Do not use '\300' style, it results in a negative number. case 'A': case 0xc0: case 0xc1: case 0xc2: case 0xc3: case 0xc4: case 0xc5: CASEMBC(0x100) CASEMBC(0x102) CASEMBC(0x104) CASEMBC(0x1cd) CASEMBC(0x1de) CASEMBC(0x1e0) CASEMBC(0x1ea2) regmbc('A'); regmbc(0xc0); regmbc(0xc1); regmbc(0xc2); regmbc(0xc3); regmbc(0xc4); regmbc(0xc5); REGMBC(0x100) REGMBC(0x102) REGMBC(0x104) REGMBC(0x1cd) REGMBC(0x1de) REGMBC(0x1e0) REGMBC(0x1ea2) return; case 'B': CASEMBC(0x1e02) CASEMBC(0x1e06) regmbc('B'); REGMBC(0x1e02) REGMBC(0x1e06) return; case 'C': case 0xc7: CASEMBC(0x106) CASEMBC(0x108) CASEMBC(0x10a) CASEMBC(0x10c) regmbc('C'); regmbc(0xc7); REGMBC(0x106) REGMBC(0x108) REGMBC(0x10a) REGMBC(0x10c) return; case 'D': CASEMBC(0x10e) CASEMBC(0x110) CASEMBC(0x1e0a) CASEMBC(0x1e0e) CASEMBC(0x1e10) regmbc('D'); REGMBC(0x10e) REGMBC(0x110) REGMBC(0x1e0a) REGMBC(0x1e0e) REGMBC(0x1e10) return; case 'E': case 0xc8: case 0xc9: case 0xca: case 0xcb: CASEMBC(0x112) CASEMBC(0x114) CASEMBC(0x116) CASEMBC(0x118) CASEMBC(0x11a) CASEMBC(0x1eba) CASEMBC(0x1ebc) regmbc('E'); regmbc(0xc8); regmbc(0xc9); regmbc(0xca); regmbc(0xcb); REGMBC(0x112) REGMBC(0x114) REGMBC(0x116) REGMBC(0x118) REGMBC(0x11a) REGMBC(0x1eba) REGMBC(0x1ebc) return; case 'F': CASEMBC(0x1e1e) regmbc('F'); REGMBC(0x1e1e) return; case 'G': CASEMBC(0x11c) CASEMBC(0x11e) CASEMBC(0x120) CASEMBC(0x122) CASEMBC(0x1e4) CASEMBC(0x1e6) CASEMBC(0x1f4) CASEMBC(0x1e20) regmbc('G'); REGMBC(0x11c) REGMBC(0x11e) REGMBC(0x120) REGMBC(0x122) REGMBC(0x1e4) REGMBC(0x1e6) REGMBC(0x1f4) REGMBC(0x1e20) return; case 'H': CASEMBC(0x124) CASEMBC(0x126) CASEMBC(0x1e22) CASEMBC(0x1e26) CASEMBC(0x1e28) regmbc('H'); REGMBC(0x124) REGMBC(0x126) REGMBC(0x1e22) REGMBC(0x1e26) REGMBC(0x1e28) return; case 'I': case 0xcc: case 0xcd: case 0xce: case 0xcf: CASEMBC(0x128) CASEMBC(0x12a) CASEMBC(0x12c) CASEMBC(0x12e) CASEMBC(0x130) CASEMBC(0x1cf) CASEMBC(0x1ec8) regmbc('I'); regmbc(0xcc); regmbc(0xcd); regmbc(0xce); regmbc(0xcf); REGMBC(0x128) REGMBC(0x12a) REGMBC(0x12c) REGMBC(0x12e) REGMBC(0x130) REGMBC(0x1cf) REGMBC(0x1ec8) return; case 'J': CASEMBC(0x134) regmbc('J'); REGMBC(0x134) return; case 'K': CASEMBC(0x136) CASEMBC(0x1e8) CASEMBC(0x1e30) CASEMBC(0x1e34) regmbc('K'); REGMBC(0x136) REGMBC(0x1e8) REGMBC(0x1e30) REGMBC(0x1e34) return; case 'L': CASEMBC(0x139) CASEMBC(0x13b) CASEMBC(0x13d) CASEMBC(0x13f) CASEMBC(0x141) CASEMBC(0x1e3a) regmbc('L'); REGMBC(0x139) REGMBC(0x13b) REGMBC(0x13d) REGMBC(0x13f) REGMBC(0x141) REGMBC(0x1e3a) return; case 'M': CASEMBC(0x1e3e) CASEMBC(0x1e40) regmbc('M'); REGMBC(0x1e3e) REGMBC(0x1e40) return; case 'N': case 0xd1: CASEMBC(0x143) CASEMBC(0x145) CASEMBC(0x147) CASEMBC(0x1e44) CASEMBC(0x1e48) regmbc('N'); regmbc(0xd1); REGMBC(0x143) REGMBC(0x145) REGMBC(0x147) REGMBC(0x1e44) REGMBC(0x1e48) return; case 'O': case 0xd2: case 0xd3: case 0xd4: case 0xd5: case 0xd6: case 0xd8: CASEMBC(0x14c) CASEMBC(0x14e) CASEMBC(0x150) CASEMBC(0x1a0) CASEMBC(0x1d1) CASEMBC(0x1ea) CASEMBC(0x1ec) CASEMBC(0x1ece) regmbc('O'); regmbc(0xd2); regmbc(0xd3); regmbc(0xd4); regmbc(0xd5); regmbc(0xd6); regmbc(0xd8); REGMBC(0x14c) REGMBC(0x14e) REGMBC(0x150) REGMBC(0x1a0) REGMBC(0x1d1) REGMBC(0x1ea) REGMBC(0x1ec) REGMBC(0x1ece) return; case 'P': case 0x1e54: case 0x1e56: regmbc('P'); REGMBC(0x1e54) REGMBC(0x1e56) return; case 'R': CASEMBC(0x154) CASEMBC(0x156) CASEMBC(0x158) CASEMBC(0x1e58) CASEMBC(0x1e5e) regmbc('R'); REGMBC(0x154) REGMBC(0x156) REGMBC(0x158) REGMBC(0x1e58) REGMBC(0x1e5e) return; case 'S': CASEMBC(0x15a) CASEMBC(0x15c) CASEMBC(0x15e) CASEMBC(0x160) CASEMBC(0x1e60) regmbc('S'); REGMBC(0x15a) REGMBC(0x15c) REGMBC(0x15e) REGMBC(0x160) REGMBC(0x1e60) return; case 'T': CASEMBC(0x162) CASEMBC(0x164) CASEMBC(0x166) CASEMBC(0x1e6a) CASEMBC(0x1e6e) regmbc('T'); REGMBC(0x162) REGMBC(0x164) REGMBC(0x166) REGMBC(0x1e6a) REGMBC(0x1e6e) return; case 'U': case 0xd9: case 0xda: case 0xdb: case 0xdc: CASEMBC(0x168) CASEMBC(0x16a) CASEMBC(0x16c) CASEMBC(0x16e) CASEMBC(0x170) CASEMBC(0x172) CASEMBC(0x1af) CASEMBC(0x1d3) CASEMBC(0x1ee6) regmbc('U'); regmbc(0xd9); regmbc(0xda); regmbc(0xdb); regmbc(0xdc); REGMBC(0x168) REGMBC(0x16a) REGMBC(0x16c) REGMBC(0x16e) REGMBC(0x170) REGMBC(0x172) REGMBC(0x1af) REGMBC(0x1d3) REGMBC(0x1ee6) return; case 'V': CASEMBC(0x1e7c) regmbc('V'); REGMBC(0x1e7c) return; case 'W': CASEMBC(0x174) CASEMBC(0x1e80) CASEMBC(0x1e82) CASEMBC(0x1e84) CASEMBC(0x1e86) regmbc('W'); REGMBC(0x174) REGMBC(0x1e80) REGMBC(0x1e82) REGMBC(0x1e84) REGMBC(0x1e86) return; case 'X': CASEMBC(0x1e8a) CASEMBC(0x1e8c) regmbc('X'); REGMBC(0x1e8a) REGMBC(0x1e8c) return; case 'Y': case 0xdd: CASEMBC(0x176) CASEMBC(0x178) CASEMBC(0x1e8e) CASEMBC(0x1ef2) CASEMBC(0x1ef6) CASEMBC(0x1ef8) regmbc('Y'); regmbc(0xdd); REGMBC(0x176) REGMBC(0x178) REGMBC(0x1e8e) REGMBC(0x1ef2) REGMBC(0x1ef6) REGMBC(0x1ef8) return; case 'Z': CASEMBC(0x179) CASEMBC(0x17b) CASEMBC(0x17d) CASEMBC(0x1b5) CASEMBC(0x1e90) CASEMBC(0x1e94) regmbc('Z'); REGMBC(0x179) REGMBC(0x17b) REGMBC(0x17d) REGMBC(0x1b5) REGMBC(0x1e90) REGMBC(0x1e94) return; case 'a': case 0xe0: case 0xe1: case 0xe2: case 0xe3: case 0xe4: case 0xe5: CASEMBC(0x101) CASEMBC(0x103) CASEMBC(0x105) CASEMBC(0x1ce) CASEMBC(0x1df) CASEMBC(0x1e1) CASEMBC(0x1ea3) regmbc('a'); regmbc(0xe0); regmbc(0xe1); regmbc(0xe2); regmbc(0xe3); regmbc(0xe4); regmbc(0xe5); REGMBC(0x101) REGMBC(0x103) REGMBC(0x105) REGMBC(0x1ce) REGMBC(0x1df) REGMBC(0x1e1) REGMBC(0x1ea3) return; case 'b': CASEMBC(0x1e03) CASEMBC(0x1e07) regmbc('b'); REGMBC(0x1e03) REGMBC(0x1e07) return; case 'c': case 0xe7: CASEMBC(0x107) CASEMBC(0x109) CASEMBC(0x10b) CASEMBC(0x10d) regmbc('c'); regmbc(0xe7); REGMBC(0x107) REGMBC(0x109) REGMBC(0x10b) REGMBC(0x10d) return; case 'd': CASEMBC(0x10f) CASEMBC(0x111) CASEMBC(0x1e0b) CASEMBC(0x1e0f) CASEMBC(0x1e11) regmbc('d'); REGMBC(0x10f) REGMBC(0x111) REGMBC(0x1e0b) REGMBC(0x1e0f) REGMBC(0x1e11) return; case 'e': case 0xe8: case 0xe9: case 0xea: case 0xeb: CASEMBC(0x113) CASEMBC(0x115) CASEMBC(0x117) CASEMBC(0x119) CASEMBC(0x11b) CASEMBC(0x1ebb) CASEMBC(0x1ebd) regmbc('e'); regmbc(0xe8); regmbc(0xe9); regmbc(0xea); regmbc(0xeb); REGMBC(0x113) REGMBC(0x115) REGMBC(0x117) REGMBC(0x119) REGMBC(0x11b) REGMBC(0x1ebb) REGMBC(0x1ebd) return; case 'f': CASEMBC(0x1e1f) regmbc('f'); REGMBC(0x1e1f) return; case 'g': CASEMBC(0x11d) CASEMBC(0x11f) CASEMBC(0x121) CASEMBC(0x123) CASEMBC(0x1e5) CASEMBC(0x1e7) CASEMBC(0x1f5) CASEMBC(0x1e21) regmbc('g'); REGMBC(0x11d) REGMBC(0x11f) REGMBC(0x121) REGMBC(0x123) REGMBC(0x1e5) REGMBC(0x1e7) REGMBC(0x1f5) REGMBC(0x1e21) return; case 'h': CASEMBC(0x125) CASEMBC(0x127) CASEMBC(0x1e23) CASEMBC(0x1e27) CASEMBC(0x1e29) CASEMBC(0x1e96) regmbc('h'); REGMBC(0x125) REGMBC(0x127) REGMBC(0x1e23) REGMBC(0x1e27) REGMBC(0x1e29) REGMBC(0x1e96) return; case 'i': case 0xec: case 0xed: case 0xee: case 0xef: CASEMBC(0x129) CASEMBC(0x12b) CASEMBC(0x12d) CASEMBC(0x12f) CASEMBC(0x1d0) CASEMBC(0x1ec9) regmbc('i'); regmbc(0xec); regmbc(0xed); regmbc(0xee); regmbc(0xef); REGMBC(0x129) REGMBC(0x12b) REGMBC(0x12d) REGMBC(0x12f) REGMBC(0x1d0) REGMBC(0x1ec9) return; case 'j': CASEMBC(0x135) CASEMBC(0x1f0) regmbc('j'); REGMBC(0x135) REGMBC(0x1f0) return; case 'k': CASEMBC(0x137) CASEMBC(0x1e9) CASEMBC(0x1e31) CASEMBC(0x1e35) regmbc('k'); REGMBC(0x137) REGMBC(0x1e9) REGMBC(0x1e31) REGMBC(0x1e35) return; case 'l': CASEMBC(0x13a) CASEMBC(0x13c) CASEMBC(0x13e) CASEMBC(0x140) CASEMBC(0x142) CASEMBC(0x1e3b) regmbc('l'); REGMBC(0x13a) REGMBC(0x13c) REGMBC(0x13e) REGMBC(0x140) REGMBC(0x142) REGMBC(0x1e3b) return; case 'm': CASEMBC(0x1e3f) CASEMBC(0x1e41) regmbc('m'); REGMBC(0x1e3f) REGMBC(0x1e41) return; case 'n': case 0xf1: CASEMBC(0x144) CASEMBC(0x146) CASEMBC(0x148) CASEMBC(0x149) CASEMBC(0x1e45) CASEMBC(0x1e49) regmbc('n'); regmbc(0xf1); REGMBC(0x144) REGMBC(0x146) REGMBC(0x148) REGMBC(0x149) REGMBC(0x1e45) REGMBC(0x1e49) return; case 'o': case 0xf2: case 0xf3: case 0xf4: case 0xf5: case 0xf6: case 0xf8: CASEMBC(0x14d) CASEMBC(0x14f) CASEMBC(0x151) CASEMBC(0x1a1) CASEMBC(0x1d2) CASEMBC(0x1eb) CASEMBC(0x1ed) CASEMBC(0x1ecf) regmbc('o'); regmbc(0xf2); regmbc(0xf3); regmbc(0xf4); regmbc(0xf5); regmbc(0xf6); regmbc(0xf8); REGMBC(0x14d) REGMBC(0x14f) REGMBC(0x151) REGMBC(0x1a1) REGMBC(0x1d2) REGMBC(0x1eb) REGMBC(0x1ed) REGMBC(0x1ecf) return; case 'p': CASEMBC(0x1e55) CASEMBC(0x1e57) regmbc('p'); REGMBC(0x1e55) REGMBC(0x1e57) return; case 'r': CASEMBC(0x155) CASEMBC(0x157) CASEMBC(0x159) CASEMBC(0x1e59) CASEMBC(0x1e5f) regmbc('r'); REGMBC(0x155) REGMBC(0x157) REGMBC(0x159) REGMBC(0x1e59) REGMBC(0x1e5f) return; case 's': CASEMBC(0x15b) CASEMBC(0x15d) CASEMBC(0x15f) CASEMBC(0x161) CASEMBC(0x1e61) regmbc('s'); REGMBC(0x15b) REGMBC(0x15d) REGMBC(0x15f) REGMBC(0x161) REGMBC(0x1e61) return; case 't': CASEMBC(0x163) CASEMBC(0x165) CASEMBC(0x167) CASEMBC(0x1e6b) CASEMBC(0x1e6f) CASEMBC(0x1e97) regmbc('t'); REGMBC(0x163) REGMBC(0x165) REGMBC(0x167) REGMBC(0x1e6b) REGMBC(0x1e6f) REGMBC(0x1e97) return; case 'u': case 0xf9: case 0xfa: case 0xfb: case 0xfc: CASEMBC(0x169) CASEMBC(0x16b) CASEMBC(0x16d) CASEMBC(0x16f) CASEMBC(0x171) CASEMBC(0x173) CASEMBC(0x1b0) CASEMBC(0x1d4) CASEMBC(0x1ee7) regmbc('u'); regmbc(0xf9); regmbc(0xfa); regmbc(0xfb); regmbc(0xfc); REGMBC(0x169) REGMBC(0x16b) REGMBC(0x16d) REGMBC(0x16f) REGMBC(0x171) REGMBC(0x173) REGMBC(0x1b0) REGMBC(0x1d4) REGMBC(0x1ee7) return; case 'v': CASEMBC(0x1e7d) regmbc('v'); REGMBC(0x1e7d) return; case 'w': CASEMBC(0x175) CASEMBC(0x1e81) CASEMBC(0x1e83) CASEMBC(0x1e85) CASEMBC(0x1e87) CASEMBC(0x1e98) regmbc('w'); REGMBC(0x175) REGMBC(0x1e81) REGMBC(0x1e83) REGMBC(0x1e85) REGMBC(0x1e87) REGMBC(0x1e98) return; case 'x': CASEMBC(0x1e8b) CASEMBC(0x1e8d) regmbc('x'); REGMBC(0x1e8b) REGMBC(0x1e8d) return; case 'y': case 0xfd: case 0xff: CASEMBC(0x177) CASEMBC(0x1e8f) CASEMBC(0x1e99) CASEMBC(0x1ef3) CASEMBC(0x1ef7) CASEMBC(0x1ef9) regmbc('y'); regmbc(0xfd); regmbc(0xff); REGMBC(0x177) REGMBC(0x1e8f) REGMBC(0x1e99) REGMBC(0x1ef3) REGMBC(0x1ef7) REGMBC(0x1ef9) return; case 'z': CASEMBC(0x17a) CASEMBC(0x17c) CASEMBC(0x17e) CASEMBC(0x1b6) CASEMBC(0x1e91) CASEMBC(0x1e95) regmbc('z'); REGMBC(0x17a) REGMBC(0x17c) REGMBC(0x17e) REGMBC(0x1b6) REGMBC(0x1e91) REGMBC(0x1e95) return; } #endif } regmbc(c); } /* * Emit a node. * Return pointer to generated code. */ static char_u * regnode(int op) { char_u *ret; ret = regcode; if (ret == JUST_CALC_SIZE) regsize += 3; else { *regcode++ = op; *regcode++ = NUL; // Null "next" pointer. *regcode++ = NUL; } return ret; } /* * Write a long as four bytes at "p" and return pointer to the next char. */ static char_u * re_put_long(char_u *p, long_u val) { *p++ = (char_u) ((val >> 24) & 0377); *p++ = (char_u) ((val >> 16) & 0377); *p++ = (char_u) ((val >> 8) & 0377); *p++ = (char_u) (val & 0377); return p; } /* * regnext - dig the "next" pointer out of a node * Returns NULL when calculating size, when there is no next item and when * there is an error. */ static char_u * regnext(char_u *p) { int offset; if (p == JUST_CALC_SIZE || reg_toolong) return NULL; offset = NEXT(p); if (offset == 0) return NULL; if (OP(p) == BACK) return p - offset; else return p + offset; } /* * Set the next-pointer at the end of a node chain. */ static void regtail(char_u *p, char_u *val) { char_u *scan; char_u *temp; int offset; if (p == JUST_CALC_SIZE) return; // Find last node. scan = p; for (;;) { temp = regnext(scan); if (temp == NULL) break; scan = temp; } if (OP(scan) == BACK) offset = (int)(scan - val); else offset = (int)(val - scan); // When the offset uses more than 16 bits it can no longer fit in the two // bytes available. Use a global flag to avoid having to check return // values in too many places. if (offset > 0xffff) reg_toolong = TRUE; else { *(scan + 1) = (char_u) (((unsigned)offset >> 8) & 0377); *(scan + 2) = (char_u) (offset & 0377); } } /* * Like regtail, on item after a BRANCH; nop if none. */ static void regoptail(char_u *p, char_u *val) { // When op is neither BRANCH nor BRACE_COMPLEX0-9, it is "operandless" if (p == NULL || p == JUST_CALC_SIZE || (OP(p) != BRANCH && (OP(p) < BRACE_COMPLEX || OP(p) > BRACE_COMPLEX + 9))) return; regtail(OPERAND(p), val); } /* * Insert an operator in front of already-emitted operand * * Means relocating the operand. */ static void reginsert(int op, char_u *opnd) { char_u *src; char_u *dst; char_u *place; if (regcode == JUST_CALC_SIZE) { regsize += 3; return; } src = regcode; regcode += 3; dst = regcode; while (src > opnd) *--dst = *--src; place = opnd; // Op node, where operand used to be. *place++ = op; *place++ = NUL; *place = NUL; } /* * Insert an operator in front of already-emitted operand. * Add a number to the operator. */ static void reginsert_nr(int op, long val, char_u *opnd) { char_u *src; char_u *dst; char_u *place; if (regcode == JUST_CALC_SIZE) { regsize += 7; return; } src = regcode; regcode += 7; dst = regcode; while (src > opnd) *--dst = *--src; place = opnd; // Op node, where operand used to be. *place++ = op; *place++ = NUL; *place++ = NUL; re_put_long(place, (long_u)val); } /* * Insert an operator in front of already-emitted operand. * The operator has the given limit values as operands. Also set next pointer. * * Means relocating the operand. */ static void reginsert_limits( int op, long minval, long maxval, char_u *opnd) { char_u *src; char_u *dst; char_u *place; if (regcode == JUST_CALC_SIZE) { regsize += 11; return; } src = regcode; regcode += 11; dst = regcode; while (src > opnd) *--dst = *--src; place = opnd; // Op node, where operand used to be. *place++ = op; *place++ = NUL; *place++ = NUL; place = re_put_long(place, (long_u)minval); place = re_put_long(place, (long_u)maxval); regtail(opnd, place); } /* * Return TRUE if the back reference is legal. We must have seen the close * brace. * TODO: Should also check that we don't refer to something that is repeated * (+*=): what instance of the repetition should we match? */ static int seen_endbrace(int refnum) { if (!had_endbrace[refnum]) { char_u *p; // Trick: check if "@<=" or "@<!" follows, in which case // the \1 can appear before the referenced match. for (p = regparse; *p != NUL; ++p) if (p[0] == '@' && p[1] == '<' && (p[2] == '!' || p[2] == '=')) break; if (*p == NUL) { emsg(_("E65: Illegal back reference")); rc_did_emsg = TRUE; return FALSE; } } return TRUE; } /* * Parse the lowest level. * * Optimization: gobbles an entire sequence of ordinary characters so that * it can turn them into a single node, which is smaller to store and * faster to run. Don't do this when one_exactly is set. */ static char_u * regatom(int *flagp) { char_u *ret; int flags; int c; char_u *p; int extra = 0; int save_prev_at_start = prev_at_start; *flagp = WORST; // Tentatively. c = getchr(); switch (c) { case Magic('^'): ret = regnode(BOL); break; case Magic('$'): ret = regnode(EOL); #if defined(FEAT_SYN_HL) || defined(PROTO) had_eol = TRUE; #endif break; case Magic('<'): ret = regnode(BOW); break; case Magic('>'): ret = regnode(EOW); break; case Magic('_'): c = no_Magic(getchr()); if (c == '^') // "\_^" is start-of-line { ret = regnode(BOL); break; } if (c == '$') // "\_$" is end-of-line { ret = regnode(EOL); #if defined(FEAT_SYN_HL) || defined(PROTO) had_eol = TRUE; #endif break; } extra = ADD_NL; *flagp |= HASNL; // "\_[" is character range plus newline if (c == '[') goto collection; // "\_x" is character class plus newline // FALLTHROUGH // Character classes. case Magic('.'): case Magic('i'): case Magic('I'): case Magic('k'): case Magic('K'): case Magic('f'): case Magic('F'): case Magic('p'): case Magic('P'): case Magic('s'): case Magic('S'): case Magic('d'): case Magic('D'): case Magic('x'): case Magic('X'): case Magic('o'): case Magic('O'): case Magic('w'): case Magic('W'): case Magic('h'): case Magic('H'): case Magic('a'): case Magic('A'): case Magic('l'): case Magic('L'): case Magic('u'): case Magic('U'): p = vim_strchr(classchars, no_Magic(c)); if (p == NULL) EMSG_RET_NULL(_("E63: invalid use of \\_")); // When '.' is followed by a composing char ignore the dot, so that // the composing char is matched here. if (enc_utf8 && c == Magic('.') && utf_iscomposing(peekchr())) { c = getchr(); goto do_multibyte; } ret = regnode(classcodes[p - classchars] + extra); *flagp |= HASWIDTH | SIMPLE; break; case Magic('n'): if (reg_string) { // In a string "\n" matches a newline character. ret = regnode(EXACTLY); regc(NL); regc(NUL); *flagp |= HASWIDTH | SIMPLE; } else { // In buffer text "\n" matches the end of a line. ret = regnode(NEWL); *flagp |= HASWIDTH | HASNL; } break; case Magic('('): if (one_exactly) EMSG_ONE_RET_NULL; ret = reg(REG_PAREN, &flags); if (ret == NULL) return NULL; *flagp |= flags & (HASWIDTH | SPSTART | HASNL | HASLOOKBH); break; case NUL: case Magic('|'): case Magic('&'): case Magic(')'): if (one_exactly) EMSG_ONE_RET_NULL; IEMSG_RET_NULL(_(e_internal)); // Supposed to be caught earlier. // NOTREACHED case Magic('='): case Magic('?'): case Magic('+'): case Magic('@'): case Magic('{'): case Magic('*'): c = no_Magic(c); EMSG3_RET_NULL(_("E64: %s%c follows nothing"), (c == '*' ? reg_magic >= MAGIC_ON : reg_magic == MAGIC_ALL), c); // NOTREACHED case Magic('~'): // previous substitute pattern if (reg_prev_sub != NULL) { char_u *lp; ret = regnode(EXACTLY); lp = reg_prev_sub; while (*lp != NUL) regc(*lp++); regc(NUL); if (*reg_prev_sub != NUL) { *flagp |= HASWIDTH; if ((lp - reg_prev_sub) == 1) *flagp |= SIMPLE; } } else EMSG_RET_NULL(_(e_nopresub)); break; case Magic('1'): case Magic('2'): case Magic('3'): case Magic('4'): case Magic('5'): case Magic('6'): case Magic('7'): case Magic('8'): case Magic('9'): { int refnum; refnum = c - Magic('0'); if (!seen_endbrace(refnum)) return NULL; ret = regnode(BACKREF + refnum); } break; case Magic('z'): { c = no_Magic(getchr()); switch (c) { #ifdef FEAT_SYN_HL case '(': if ((reg_do_extmatch & REX_SET) == 0) EMSG_RET_NULL(_(e_z_not_allowed)); if (one_exactly) EMSG_ONE_RET_NULL; ret = reg(REG_ZPAREN, &flags); if (ret == NULL) return NULL; *flagp |= flags & (HASWIDTH|SPSTART|HASNL|HASLOOKBH); re_has_z = REX_SET; break; case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': if ((reg_do_extmatch & REX_USE) == 0) EMSG_RET_NULL(_(e_z1_not_allowed)); ret = regnode(ZREF + c - '0'); re_has_z = REX_USE; break; #endif case 's': ret = regnode(MOPEN + 0); if (re_mult_next("\\zs") == FAIL) return NULL; break; case 'e': ret = regnode(MCLOSE + 0); if (re_mult_next("\\ze") == FAIL) return NULL; break; default: EMSG_RET_NULL(_("E68: Invalid character after \\z")); } } break; case Magic('%'): { c = no_Magic(getchr()); switch (c) { // () without a back reference case '(': if (one_exactly) EMSG_ONE_RET_NULL; ret = reg(REG_NPAREN, &flags); if (ret == NULL) return NULL; *flagp |= flags & (HASWIDTH | SPSTART | HASNL | HASLOOKBH); break; // Catch \%^ and \%$ regardless of where they appear in the // pattern -- regardless of whether or not it makes sense. case '^': ret = regnode(RE_BOF); break; case '$': ret = regnode(RE_EOF); break; case '#': ret = regnode(CURSOR); break; case 'V': ret = regnode(RE_VISUAL); break; case 'C': ret = regnode(RE_COMPOSING); break; // \%[abc]: Emit as a list of branches, all ending at the last // branch which matches nothing. case '[': if (one_exactly) // doesn't nest EMSG_ONE_RET_NULL; { char_u *lastbranch; char_u *lastnode = NULL; char_u *br; ret = NULL; while ((c = getchr()) != ']') { if (c == NUL) EMSG2_RET_NULL(_(e_missing_sb), reg_magic == MAGIC_ALL); br = regnode(BRANCH); if (ret == NULL) ret = br; else { regtail(lastnode, br); if (reg_toolong) return NULL; } ungetchr(); one_exactly = TRUE; lastnode = regatom(flagp); one_exactly = FALSE; if (lastnode == NULL) return NULL; } if (ret == NULL) EMSG2_RET_NULL(_(e_empty_sb), reg_magic == MAGIC_ALL); lastbranch = regnode(BRANCH); br = regnode(NOTHING); if (ret != JUST_CALC_SIZE) { regtail(lastnode, br); regtail(lastbranch, br); // connect all branches to the NOTHING // branch at the end for (br = ret; br != lastnode; ) { if (OP(br) == BRANCH) { regtail(br, lastbranch); if (reg_toolong) return NULL; br = OPERAND(br); } else br = regnext(br); } } *flagp &= ~(HASWIDTH | SIMPLE); break; } case 'd': // %d123 decimal case 'o': // %o123 octal case 'x': // %xab hex 2 case 'u': // %uabcd hex 4 case 'U': // %U1234abcd hex 8 { long i; switch (c) { case 'd': i = getdecchrs(); break; case 'o': i = getoctchrs(); break; case 'x': i = gethexchrs(2); break; case 'u': i = gethexchrs(4); break; case 'U': i = gethexchrs(8); break; default: i = -1; break; } if (i < 0 || i > INT_MAX) EMSG2_RET_NULL( _("E678: Invalid character after %s%%[dxouU]"), reg_magic == MAGIC_ALL); if (use_multibytecode(i)) ret = regnode(MULTIBYTECODE); else ret = regnode(EXACTLY); if (i == 0) regc(0x0a); else regmbc(i); regc(NUL); *flagp |= HASWIDTH; break; } default: if (VIM_ISDIGIT(c) || c == '<' || c == '>' || c == '\'') { long_u n = 0; int cmp; cmp = c; if (cmp == '<' || cmp == '>') c = getchr(); while (VIM_ISDIGIT(c)) { n = n * 10 + (c - '0'); c = getchr(); } if (c == '\'' && n == 0) { // "\%'m", "\%<'m" and "\%>'m": Mark c = getchr(); ret = regnode(RE_MARK); if (ret == JUST_CALC_SIZE) regsize += 2; else { *regcode++ = c; *regcode++ = cmp; } break; } else if (c == 'l' || c == 'c' || c == 'v') { if (c == 'l') { ret = regnode(RE_LNUM); if (save_prev_at_start) at_start = TRUE; } else if (c == 'c') ret = regnode(RE_COL); else ret = regnode(RE_VCOL); if (ret == JUST_CALC_SIZE) regsize += 5; else { // put the number and the optional // comparator after the opcode regcode = re_put_long(regcode, n); *regcode++ = cmp; } break; } } EMSG2_RET_NULL(_("E71: Invalid character after %s%%"), reg_magic == MAGIC_ALL); } } break; case Magic('['): collection: { char_u *lp; // If there is no matching ']', we assume the '[' is a normal // character. This makes 'incsearch' and ":help [" work. lp = skip_anyof(regparse); if (*lp == ']') // there is a matching ']' { int startc = -1; // > 0 when next '-' is a range int endc; // In a character class, different parsing rules apply. // Not even \ is special anymore, nothing is. if (*regparse == '^') // Complement of range. { ret = regnode(ANYBUT + extra); regparse++; } else ret = regnode(ANYOF + extra); // At the start ']' and '-' mean the literal character. if (*regparse == ']' || *regparse == '-') { startc = *regparse; regc(*regparse++); } while (*regparse != NUL && *regparse != ']') { if (*regparse == '-') { ++regparse; // The '-' is not used for a range at the end and // after or before a '\n'. if (*regparse == ']' || *regparse == NUL || startc == -1 || (regparse[0] == '\\' && regparse[1] == 'n')) { regc('-'); startc = '-'; // [--x] is a range } else { // Also accept "a-[.z.]" endc = 0; if (*regparse == '[') endc = get_coll_element(®parse); if (endc == 0) { if (has_mbyte) endc = mb_ptr2char_adv(®parse); else endc = *regparse++; } // Handle \o40, \x20 and \u20AC style sequences if (endc == '\\' && !reg_cpo_lit && !reg_cpo_bsl) endc = coll_get_char(); if (startc > endc) EMSG_RET_NULL(_(e_reverse_range)); if (has_mbyte && ((*mb_char2len)(startc) > 1 || (*mb_char2len)(endc) > 1)) { // Limit to a range of 256 chars. if (endc > startc + 256) EMSG_RET_NULL(_(e_large_class)); while (++startc <= endc) regmbc(startc); } else { #ifdef EBCDIC int alpha_only = FALSE; // for alphabetical range skip the gaps // 'i'-'j', 'r'-'s', 'I'-'J' and 'R'-'S'. if (isalpha(startc) && isalpha(endc)) alpha_only = TRUE; #endif while (++startc <= endc) #ifdef EBCDIC if (!alpha_only || isalpha(startc)) #endif regc(startc); } startc = -1; } } // Only "\]", "\^", "\]" and "\\" are special in Vi. Vim // accepts "\t", "\e", etc., but only when the 'l' flag in // 'cpoptions' is not included. // Posix doesn't recognize backslash at all. else if (*regparse == '\\' && !reg_cpo_bsl && (vim_strchr(REGEXP_INRANGE, regparse[1]) != NULL || (!reg_cpo_lit && vim_strchr(REGEXP_ABBR, regparse[1]) != NULL))) { regparse++; if (*regparse == 'n') { // '\n' in range: also match NL if (ret != JUST_CALC_SIZE) { // Using \n inside [^] does not change what // matches. "[^\n]" is the same as ".". if (*ret == ANYOF) { *ret = ANYOF + ADD_NL; *flagp |= HASNL; } // else: must have had a \n already } regparse++; startc = -1; } else if (*regparse == 'd' || *regparse == 'o' || *regparse == 'x' || *regparse == 'u' || *regparse == 'U') { startc = coll_get_char(); if (startc == 0) regc(0x0a); else regmbc(startc); } else { startc = backslash_trans(*regparse++); regc(startc); } } else if (*regparse == '[') { int c_class; int cu; c_class = get_char_class(®parse); startc = -1; // Characters assumed to be 8 bits! switch (c_class) { case CLASS_NONE: c_class = get_equi_class(®parse); if (c_class != 0) { // produce equivalence class reg_equi_class(c_class); } else if ((c_class = get_coll_element(®parse)) != 0) { // produce a collating element regmbc(c_class); } else { // literal '[', allow [[-x] as a range startc = *regparse++; regc(startc); } break; case CLASS_ALNUM: for (cu = 1; cu < 128; cu++) if (isalnum(cu)) regmbc(cu); break; case CLASS_ALPHA: for (cu = 1; cu < 128; cu++) if (isalpha(cu)) regmbc(cu); break; case CLASS_BLANK: regc(' '); regc('\t'); break; case CLASS_CNTRL: for (cu = 1; cu <= 127; cu++) if (iscntrl(cu)) regmbc(cu); break; case CLASS_DIGIT: for (cu = 1; cu <= 127; cu++) if (VIM_ISDIGIT(cu)) regmbc(cu); break; case CLASS_GRAPH: for (cu = 1; cu <= 127; cu++) if (isgraph(cu)) regmbc(cu); break; case CLASS_LOWER: for (cu = 1; cu <= 255; cu++) if (MB_ISLOWER(cu) && cu != 170 && cu != 186) regmbc(cu); break; case CLASS_PRINT: for (cu = 1; cu <= 255; cu++) if (vim_isprintc(cu)) regmbc(cu); break; case CLASS_PUNCT: for (cu = 1; cu < 128; cu++) if (ispunct(cu)) regmbc(cu); break; case CLASS_SPACE: for (cu = 9; cu <= 13; cu++) regc(cu); regc(' '); break; case CLASS_UPPER: for (cu = 1; cu <= 255; cu++) if (MB_ISUPPER(cu)) regmbc(cu); break; case CLASS_XDIGIT: for (cu = 1; cu <= 255; cu++) if (vim_isxdigit(cu)) regmbc(cu); break; case CLASS_TAB: regc('\t'); break; case CLASS_RETURN: regc('\r'); break; case CLASS_BACKSPACE: regc('\b'); break; case CLASS_ESCAPE: regc('\033'); break; case CLASS_IDENT: for (cu = 1; cu <= 255; cu++) if (vim_isIDc(cu)) regmbc(cu); break; case CLASS_KEYWORD: for (cu = 1; cu <= 255; cu++) if (reg_iswordc(cu)) regmbc(cu); break; case CLASS_FNAME: for (cu = 1; cu <= 255; cu++) if (vim_isfilec(cu)) regmbc(cu); break; } } else { if (has_mbyte) { int len; // produce a multibyte character, including any // following composing characters startc = mb_ptr2char(regparse); len = (*mb_ptr2len)(regparse); if (enc_utf8 && utf_char2len(startc) != len) startc = -1; // composing chars while (--len >= 0) regc(*regparse++); } else { startc = *regparse++; regc(startc); } } } regc(NUL); prevchr_len = 1; // last char was the ']' if (*regparse != ']') EMSG_RET_NULL(_(e_toomsbra)); // Cannot happen? skipchr(); // let's be friends with the lexer again *flagp |= HASWIDTH | SIMPLE; break; } else if (reg_strict) EMSG2_RET_NULL(_(e_missingbracket), reg_magic > MAGIC_OFF); } // FALLTHROUGH default: { int len; // A multi-byte character is handled as a separate atom if it's // before a multi and when it's a composing char. if (use_multibytecode(c)) { do_multibyte: ret = regnode(MULTIBYTECODE); regmbc(c); *flagp |= HASWIDTH | SIMPLE; break; } ret = regnode(EXACTLY); // Append characters as long as: // - there is no following multi, we then need the character in // front of it as a single character operand // - not running into a Magic character // - "one_exactly" is not set // But always emit at least one character. Might be a Multi, // e.g., a "[" without matching "]". for (len = 0; c != NUL && (len == 0 || (re_multi_type(peekchr()) == NOT_MULTI && !one_exactly && !is_Magic(c))); ++len) { c = no_Magic(c); if (has_mbyte) { regmbc(c); if (enc_utf8) { int l; // Need to get composing character too. for (;;) { l = utf_ptr2len(regparse); if (!UTF_COMPOSINGLIKE(regparse, regparse + l)) break; regmbc(utf_ptr2char(regparse)); skipchr(); } } } else regc(c); c = getchr(); } ungetchr(); regc(NUL); *flagp |= HASWIDTH; if (len == 1) *flagp |= SIMPLE; } break; } return ret; } /* * Parse something followed by possible [*+=]. * * Note that the branching code sequences used for = and the general cases * of * and + are somewhat optimized: they use the same NOTHING node as * both the endmarker for their branch list and the body of the last branch. * It might seem that this node could be dispensed with entirely, but the * endmarker role is not redundant. */ static char_u * regpiece(int *flagp) { char_u *ret; int op; char_u *next; int flags; long minval; long maxval; ret = regatom(&flags); if (ret == NULL) return NULL; op = peekchr(); if (re_multi_type(op) == NOT_MULTI) { *flagp = flags; return ret; } // default flags *flagp = (WORST | SPSTART | (flags & (HASNL | HASLOOKBH))); skipchr(); switch (op) { case Magic('*'): if (flags & SIMPLE) reginsert(STAR, ret); else { // Emit x* as (x&|), where & means "self". reginsert(BRANCH, ret); // Either x regoptail(ret, regnode(BACK)); // and loop regoptail(ret, ret); // back regtail(ret, regnode(BRANCH)); // or regtail(ret, regnode(NOTHING)); // null. } break; case Magic('+'): if (flags & SIMPLE) reginsert(PLUS, ret); else { // Emit x+ as x(&|), where & means "self". next = regnode(BRANCH); // Either regtail(ret, next); regtail(regnode(BACK), ret); // loop back regtail(next, regnode(BRANCH)); // or regtail(ret, regnode(NOTHING)); // null. } *flagp = (WORST | HASWIDTH | (flags & (HASNL | HASLOOKBH))); break; case Magic('@'): { int lop = END; long nr; nr = getdecchrs(); switch (no_Magic(getchr())) { case '=': lop = MATCH; break; // \@= case '!': lop = NOMATCH; break; // \@! case '>': lop = SUBPAT; break; // \@> case '<': switch (no_Magic(getchr())) { case '=': lop = BEHIND; break; // \@<= case '!': lop = NOBEHIND; break; // \@<! } } if (lop == END) EMSG2_RET_NULL(_("E59: invalid character after %s@"), reg_magic == MAGIC_ALL); // Look behind must match with behind_pos. if (lop == BEHIND || lop == NOBEHIND) { regtail(ret, regnode(BHPOS)); *flagp |= HASLOOKBH; } regtail(ret, regnode(END)); // operand ends if (lop == BEHIND || lop == NOBEHIND) { if (nr < 0) nr = 0; // no limit is same as zero limit reginsert_nr(lop, nr, ret); } else reginsert(lop, ret); break; } case Magic('?'): case Magic('='): // Emit x= as (x|) reginsert(BRANCH, ret); // Either x regtail(ret, regnode(BRANCH)); // or next = regnode(NOTHING); // null. regtail(ret, next); regoptail(ret, next); break; case Magic('{'): if (!read_limits(&minval, &maxval)) return NULL; if (flags & SIMPLE) { reginsert(BRACE_SIMPLE, ret); reginsert_limits(BRACE_LIMITS, minval, maxval, ret); } else { if (num_complex_braces >= 10) EMSG2_RET_NULL(_("E60: Too many complex %s{...}s"), reg_magic == MAGIC_ALL); reginsert(BRACE_COMPLEX + num_complex_braces, ret); regoptail(ret, regnode(BACK)); regoptail(ret, ret); reginsert_limits(BRACE_LIMITS, minval, maxval, ret); ++num_complex_braces; } if (minval > 0 && maxval > 0) *flagp = (HASWIDTH | (flags & (HASNL | HASLOOKBH))); break; } if (re_multi_type(peekchr()) != NOT_MULTI) { // Can't have a multi follow a multi. if (peekchr() == Magic('*')) EMSG2_RET_NULL(_("E61: Nested %s*"), reg_magic >= MAGIC_ON); EMSG3_RET_NULL(_("E62: Nested %s%c"), reg_magic == MAGIC_ALL, no_Magic(peekchr())); } return ret; } /* * Parse one alternative of an | or & operator. * Implements the concatenation operator. */ static char_u * regconcat(int *flagp) { char_u *first = NULL; char_u *chain = NULL; char_u *latest; int flags; int cont = TRUE; *flagp = WORST; // Tentatively. while (cont) { switch (peekchr()) { case NUL: case Magic('|'): case Magic('&'): case Magic(')'): cont = FALSE; break; case Magic('Z'): regflags |= RF_ICOMBINE; skipchr_keepstart(); break; case Magic('c'): regflags |= RF_ICASE; skipchr_keepstart(); break; case Magic('C'): regflags |= RF_NOICASE; skipchr_keepstart(); break; case Magic('v'): reg_magic = MAGIC_ALL; skipchr_keepstart(); curchr = -1; break; case Magic('m'): reg_magic = MAGIC_ON; skipchr_keepstart(); curchr = -1; break; case Magic('M'): reg_magic = MAGIC_OFF; skipchr_keepstart(); curchr = -1; break; case Magic('V'): reg_magic = MAGIC_NONE; skipchr_keepstart(); curchr = -1; break; default: latest = regpiece(&flags); if (latest == NULL || reg_toolong) return NULL; *flagp |= flags & (HASWIDTH | HASNL | HASLOOKBH); if (chain == NULL) // First piece. *flagp |= flags & SPSTART; else regtail(chain, latest); chain = latest; if (first == NULL) first = latest; break; } } if (first == NULL) // Loop ran zero times. first = regnode(NOTHING); return first; } /* * Parse one alternative of an | operator. * Implements the & operator. */ static char_u * regbranch(int *flagp) { char_u *ret; char_u *chain = NULL; char_u *latest; int flags; *flagp = WORST | HASNL; // Tentatively. ret = regnode(BRANCH); for (;;) { latest = regconcat(&flags); if (latest == NULL) return NULL; // If one of the branches has width, the whole thing has. If one of // the branches anchors at start-of-line, the whole thing does. // If one of the branches uses look-behind, the whole thing does. *flagp |= flags & (HASWIDTH | SPSTART | HASLOOKBH); // If one of the branches doesn't match a line-break, the whole thing // doesn't. *flagp &= ~HASNL | (flags & HASNL); if (chain != NULL) regtail(chain, latest); if (peekchr() != Magic('&')) break; skipchr(); regtail(latest, regnode(END)); // operand ends if (reg_toolong) break; reginsert(MATCH, latest); chain = latest; } return ret; } /* * Parse regular expression, i.e. main body or parenthesized thing. * * Caller must absorb opening parenthesis. * * Combining parenthesis handling with the base level of regular expression * is a trifle forced, but the need to tie the tails of the branches to what * follows makes it hard to avoid. */ static char_u * reg( int paren, // REG_NOPAREN, REG_PAREN, REG_NPAREN or REG_ZPAREN int *flagp) { char_u *ret; char_u *br; char_u *ender; int parno = 0; int flags; *flagp = HASWIDTH; // Tentatively. #ifdef FEAT_SYN_HL if (paren == REG_ZPAREN) { // Make a ZOPEN node. if (regnzpar >= NSUBEXP) EMSG_RET_NULL(_("E50: Too many \\z(")); parno = regnzpar; regnzpar++; ret = regnode(ZOPEN + parno); } else #endif if (paren == REG_PAREN) { // Make a MOPEN node. if (regnpar >= NSUBEXP) EMSG2_RET_NULL(_("E51: Too many %s("), reg_magic == MAGIC_ALL); parno = regnpar; ++regnpar; ret = regnode(MOPEN + parno); } else if (paren == REG_NPAREN) { // Make a NOPEN node. ret = regnode(NOPEN); } else ret = NULL; // Pick up the branches, linking them together. br = regbranch(&flags); if (br == NULL) return NULL; if (ret != NULL) regtail(ret, br); // [MZ]OPEN -> first. else ret = br; // If one of the branches can be zero-width, the whole thing can. // If one of the branches has * at start or matches a line-break, the // whole thing can. if (!(flags & HASWIDTH)) *flagp &= ~HASWIDTH; *flagp |= flags & (SPSTART | HASNL | HASLOOKBH); while (peekchr() == Magic('|')) { skipchr(); br = regbranch(&flags); if (br == NULL || reg_toolong) return NULL; regtail(ret, br); // BRANCH -> BRANCH. if (!(flags & HASWIDTH)) *flagp &= ~HASWIDTH; *flagp |= flags & (SPSTART | HASNL | HASLOOKBH); } // Make a closing node, and hook it on the end. ender = regnode( #ifdef FEAT_SYN_HL paren == REG_ZPAREN ? ZCLOSE + parno : #endif paren == REG_PAREN ? MCLOSE + parno : paren == REG_NPAREN ? NCLOSE : END); regtail(ret, ender); // Hook the tails of the branches to the closing node. for (br = ret; br != NULL; br = regnext(br)) regoptail(br, ender); // Check for proper termination. if (paren != REG_NOPAREN && getchr() != Magic(')')) { #ifdef FEAT_SYN_HL if (paren == REG_ZPAREN) EMSG_RET_NULL(_("E52: Unmatched \\z(")); else #endif if (paren == REG_NPAREN) EMSG2_RET_NULL(_(e_unmatchedpp), reg_magic == MAGIC_ALL); else EMSG2_RET_NULL(_(e_unmatchedp), reg_magic == MAGIC_ALL); } else if (paren == REG_NOPAREN && peekchr() != NUL) { if (curchr == Magic(')')) EMSG2_RET_NULL(_(e_unmatchedpar), reg_magic == MAGIC_ALL); else EMSG_RET_NULL(_(e_trailing)); // "Can't happen". // NOTREACHED } // Here we set the flag allowing back references to this set of // parentheses. if (paren == REG_PAREN) had_endbrace[parno] = TRUE; // have seen the close paren return ret; } /* * bt_regcomp() - compile a regular expression into internal code for the * traditional back track matcher. * Returns the program in allocated space. Returns NULL for an error. * * We can't allocate space until we know how big the compiled form will be, * but we can't compile it (and thus know how big it is) until we've got a * place to put the code. So we cheat: we compile it twice, once with code * generation turned off and size counting turned on, and once "for real". * This also means that we don't allocate space until we are sure that the * thing really will compile successfully, and we never have to move the * code and thus invalidate pointers into it. (Note that it has to be in * one piece because vim_free() must be able to free it all.) * * Whether upper/lower case is to be ignored is decided when executing the * program, it does not matter here. * * Beware that the optimization-preparation code in here knows about some * of the structure of the compiled regexp. * "re_flags": RE_MAGIC and/or RE_STRING. */ static regprog_T * bt_regcomp(char_u *expr, int re_flags) { bt_regprog_T *r; char_u *scan; char_u *longest; int len; int flags; if (expr == NULL) EMSG_RET_NULL(_(e_null)); init_class_tab(); // First pass: determine size, legality. regcomp_start(expr, re_flags); regcode = JUST_CALC_SIZE; regc(REGMAGIC); if (reg(REG_NOPAREN, &flags) == NULL) return NULL; // Allocate space. r = alloc(offsetof(bt_regprog_T, program) + regsize); if (r == NULL) return NULL; r->re_in_use = FALSE; // Second pass: emit code. regcomp_start(expr, re_flags); regcode = r->program; regc(REGMAGIC); if (reg(REG_NOPAREN, &flags) == NULL || reg_toolong) { vim_free(r); if (reg_toolong) EMSG_RET_NULL(_("E339: Pattern too long")); return NULL; } // Dig out information for optimizations. r->regstart = NUL; // Worst-case defaults. r->reganch = 0; r->regmust = NULL; r->regmlen = 0; r->regflags = regflags; if (flags & HASNL) r->regflags |= RF_HASNL; if (flags & HASLOOKBH) r->regflags |= RF_LOOKBH; #ifdef FEAT_SYN_HL // Remember whether this pattern has any \z specials in it. r->reghasz = re_has_z; #endif scan = r->program + 1; // First BRANCH. if (OP(regnext(scan)) == END) // Only one top-level choice. { scan = OPERAND(scan); // Starting-point info. if (OP(scan) == BOL || OP(scan) == RE_BOF) { r->reganch++; scan = regnext(scan); } if (OP(scan) == EXACTLY) { if (has_mbyte) r->regstart = (*mb_ptr2char)(OPERAND(scan)); else r->regstart = *OPERAND(scan); } else if ((OP(scan) == BOW || OP(scan) == EOW || OP(scan) == NOTHING || OP(scan) == MOPEN + 0 || OP(scan) == NOPEN || OP(scan) == MCLOSE + 0 || OP(scan) == NCLOSE) && OP(regnext(scan)) == EXACTLY) { if (has_mbyte) r->regstart = (*mb_ptr2char)(OPERAND(regnext(scan))); else r->regstart = *OPERAND(regnext(scan)); } // If there's something expensive in the r.e., find the longest // literal string that must appear and make it the regmust. Resolve // ties in favor of later strings, since the regstart check works // with the beginning of the r.e. and avoiding duplication // strengthens checking. Not a strong reason, but sufficient in the // absence of others. // When the r.e. starts with BOW, it is faster to look for a regmust // first. Used a lot for "#" and "*" commands. (Added by mool). if ((flags & SPSTART || OP(scan) == BOW || OP(scan) == EOW) && !(flags & HASNL)) { longest = NULL; len = 0; for (; scan != NULL; scan = regnext(scan)) if (OP(scan) == EXACTLY && STRLEN(OPERAND(scan)) >= (size_t)len) { longest = OPERAND(scan); len = (int)STRLEN(OPERAND(scan)); } r->regmust = longest; r->regmlen = len; } } #ifdef BT_REGEXP_DUMP regdump(expr, r); #endif r->engine = &bt_regengine; return (regprog_T *)r; } #if defined(FEAT_SYN_HL) || defined(PROTO) /* * Check if during the previous call to vim_regcomp the EOL item "$" has been * found. This is messy, but it works fine. */ int vim_regcomp_had_eol(void) { return had_eol; } #endif /* * Get a number after a backslash that is inside []. * When nothing is recognized return a backslash. */ static int coll_get_char(void) { long nr = -1; switch (*regparse++) { case 'd': nr = getdecchrs(); break; case 'o': nr = getoctchrs(); break; case 'x': nr = gethexchrs(2); break; case 'u': nr = gethexchrs(4); break; case 'U': nr = gethexchrs(8); break; } if (nr < 0 || nr > INT_MAX) { // If getting the number fails be backwards compatible: the character // is a backslash. --regparse; nr = '\\'; } return nr; } /* * Free a compiled regexp program, returned by bt_regcomp(). */ static void bt_regfree(regprog_T *prog) { vim_free(prog); } #define ADVANCE_REGINPUT() MB_PTR_ADV(rex.input) /* * The arguments from BRACE_LIMITS are stored here. They are actually local * to regmatch(), but they are here to reduce the amount of stack space used * (it can be called recursively many times). */ static long bl_minval; static long bl_maxval; /* * Save the input line and position in a regsave_T. */ static void reg_save(regsave_T *save, garray_T *gap) { if (REG_MULTI) { save->rs_u.pos.col = (colnr_T)(rex.input - rex.line); save->rs_u.pos.lnum = rex.lnum; } else save->rs_u.ptr = rex.input; save->rs_len = gap->ga_len; } /* * Restore the input line and position from a regsave_T. */ static void reg_restore(regsave_T *save, garray_T *gap) { if (REG_MULTI) { if (rex.lnum != save->rs_u.pos.lnum) { // only call reg_getline() when the line number changed to save // a bit of time rex.lnum = save->rs_u.pos.lnum; rex.line = reg_getline(rex.lnum); } rex.input = rex.line + save->rs_u.pos.col; } else rex.input = save->rs_u.ptr; gap->ga_len = save->rs_len; } /* * Return TRUE if current position is equal to saved position. */ static int reg_save_equal(regsave_T *save) { if (REG_MULTI) return rex.lnum == save->rs_u.pos.lnum && rex.input == rex.line + save->rs_u.pos.col; return rex.input == save->rs_u.ptr; } // Save the sub-expressions before attempting a match. #define save_se(savep, posp, pp) \ REG_MULTI ? save_se_multi((savep), (posp)) : save_se_one((savep), (pp)) // After a failed match restore the sub-expressions. #define restore_se(savep, posp, pp) { \ if (REG_MULTI) \ *(posp) = (savep)->se_u.pos; \ else \ *(pp) = (savep)->se_u.ptr; } /* * Tentatively set the sub-expression start to the current position (after * calling regmatch() they will have changed). Need to save the existing * values for when there is no match. * Use se_save() to use pointer (save_se_multi()) or position (save_se_one()), * depending on REG_MULTI. */ static void save_se_multi(save_se_T *savep, lpos_T *posp) { savep->se_u.pos = *posp; posp->lnum = rex.lnum; posp->col = (colnr_T)(rex.input - rex.line); } static void save_se_one(save_se_T *savep, char_u **pp) { savep->se_u.ptr = *pp; *pp = rex.input; } /* * regrepeat - repeatedly match something simple, return how many. * Advances rex.input (and rex.lnum) to just after the matched chars. */ static int regrepeat( char_u *p, long maxcount) // maximum number of matches allowed { long count = 0; char_u *scan; char_u *opnd; int mask; int testval = 0; scan = rex.input; // Make local copy of rex.input for speed. opnd = OPERAND(p); switch (OP(p)) { case ANY: case ANY + ADD_NL: while (count < maxcount) { // Matching anything means we continue until end-of-line (or // end-of-file for ANY + ADD_NL), only limited by maxcount. while (*scan != NUL && count < maxcount) { ++count; MB_PTR_ADV(scan); } if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr || count == maxcount) break; ++count; // count the line-break reg_nextline(); scan = rex.input; if (got_int) break; } break; case IDENT: case IDENT + ADD_NL: testval = TRUE; // FALLTHROUGH case SIDENT: case SIDENT + ADD_NL: while (count < maxcount) { if (vim_isIDc(PTR2CHAR(scan)) && (testval || !VIM_ISDIGIT(*scan))) { MB_PTR_ADV(scan); } else if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) break; reg_nextline(); scan = rex.input; if (got_int) break; } else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) ++scan; else break; ++count; } break; case KWORD: case KWORD + ADD_NL: testval = TRUE; // FALLTHROUGH case SKWORD: case SKWORD + ADD_NL: while (count < maxcount) { if (vim_iswordp_buf(scan, rex.reg_buf) && (testval || !VIM_ISDIGIT(*scan))) { MB_PTR_ADV(scan); } else if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) break; reg_nextline(); scan = rex.input; if (got_int) break; } else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) ++scan; else break; ++count; } break; case FNAME: case FNAME + ADD_NL: testval = TRUE; // FALLTHROUGH case SFNAME: case SFNAME + ADD_NL: while (count < maxcount) { if (vim_isfilec(PTR2CHAR(scan)) && (testval || !VIM_ISDIGIT(*scan))) { MB_PTR_ADV(scan); } else if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) break; reg_nextline(); scan = rex.input; if (got_int) break; } else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) ++scan; else break; ++count; } break; case PRINT: case PRINT + ADD_NL: testval = TRUE; // FALLTHROUGH case SPRINT: case SPRINT + ADD_NL: while (count < maxcount) { if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) break; reg_nextline(); scan = rex.input; if (got_int) break; } else if (vim_isprintc(PTR2CHAR(scan)) == 1 && (testval || !VIM_ISDIGIT(*scan))) { MB_PTR_ADV(scan); } else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) ++scan; else break; ++count; } break; case WHITE: case WHITE + ADD_NL: testval = mask = RI_WHITE; do_class: while (count < maxcount) { int l; if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) break; reg_nextline(); scan = rex.input; if (got_int) break; } else if (has_mbyte && (l = (*mb_ptr2len)(scan)) > 1) { if (testval != 0) break; scan += l; } else if ((class_tab[*scan] & mask) == testval) ++scan; else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) ++scan; else break; ++count; } break; case NWHITE: case NWHITE + ADD_NL: mask = RI_WHITE; goto do_class; case DIGIT: case DIGIT + ADD_NL: testval = mask = RI_DIGIT; goto do_class; case NDIGIT: case NDIGIT + ADD_NL: mask = RI_DIGIT; goto do_class; case HEX: case HEX + ADD_NL: testval = mask = RI_HEX; goto do_class; case NHEX: case NHEX + ADD_NL: mask = RI_HEX; goto do_class; case OCTAL: case OCTAL + ADD_NL: testval = mask = RI_OCTAL; goto do_class; case NOCTAL: case NOCTAL + ADD_NL: mask = RI_OCTAL; goto do_class; case WORD: case WORD + ADD_NL: testval = mask = RI_WORD; goto do_class; case NWORD: case NWORD + ADD_NL: mask = RI_WORD; goto do_class; case HEAD: case HEAD + ADD_NL: testval = mask = RI_HEAD; goto do_class; case NHEAD: case NHEAD + ADD_NL: mask = RI_HEAD; goto do_class; case ALPHA: case ALPHA + ADD_NL: testval = mask = RI_ALPHA; goto do_class; case NALPHA: case NALPHA + ADD_NL: mask = RI_ALPHA; goto do_class; case LOWER: case LOWER + ADD_NL: testval = mask = RI_LOWER; goto do_class; case NLOWER: case NLOWER + ADD_NL: mask = RI_LOWER; goto do_class; case UPPER: case UPPER + ADD_NL: testval = mask = RI_UPPER; goto do_class; case NUPPER: case NUPPER + ADD_NL: mask = RI_UPPER; goto do_class; case EXACTLY: { int cu, cl; // This doesn't do a multi-byte character, because a MULTIBYTECODE // would have been used for it. It does handle single-byte // characters, such as latin1. if (rex.reg_ic) { cu = MB_TOUPPER(*opnd); cl = MB_TOLOWER(*opnd); while (count < maxcount && (*scan == cu || *scan == cl)) { count++; scan++; } } else { cu = *opnd; while (count < maxcount && *scan == cu) { count++; scan++; } } break; } case MULTIBYTECODE: { int i, len, cf = 0; // Safety check (just in case 'encoding' was changed since // compiling the program). if ((len = (*mb_ptr2len)(opnd)) > 1) { if (rex.reg_ic && enc_utf8) cf = utf_fold(utf_ptr2char(opnd)); while (count < maxcount && (*mb_ptr2len)(scan) >= len) { for (i = 0; i < len; ++i) if (opnd[i] != scan[i]) break; if (i < len && (!rex.reg_ic || !enc_utf8 || utf_fold(utf_ptr2char(scan)) != cf)) break; scan += len; ++count; } } } break; case ANYOF: case ANYOF + ADD_NL: testval = TRUE; // FALLTHROUGH case ANYBUT: case ANYBUT + ADD_NL: while (count < maxcount) { int len; if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) break; reg_nextline(); scan = rex.input; if (got_int) break; } else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) ++scan; else if (has_mbyte && (len = (*mb_ptr2len)(scan)) > 1) { if ((cstrchr(opnd, (*mb_ptr2char)(scan)) == NULL) == testval) break; scan += len; } else { if ((cstrchr(opnd, *scan) == NULL) == testval) break; ++scan; } ++count; } break; case NEWL: while (count < maxcount && ((*scan == NUL && rex.lnum <= rex.reg_maxline && !rex.reg_line_lbr && REG_MULTI) || (*scan == '\n' && rex.reg_line_lbr))) { count++; if (rex.reg_line_lbr) ADVANCE_REGINPUT(); else reg_nextline(); scan = rex.input; if (got_int) break; } break; default: // Oh dear. Called inappropriately. emsg(_(e_re_corr)); #ifdef DEBUG printf("Called regrepeat with op code %d\n", OP(p)); #endif break; } rex.input = scan; return (int)count; } /* * Push an item onto the regstack. * Returns pointer to new item. Returns NULL when out of memory. */ static regitem_T * regstack_push(regstate_T state, char_u *scan) { regitem_T *rp; if ((long)((unsigned)regstack.ga_len >> 10) >= p_mmp) { emsg(_(e_maxmempat)); return NULL; } if (ga_grow(®stack, sizeof(regitem_T)) == FAIL) return NULL; rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len); rp->rs_state = state; rp->rs_scan = scan; regstack.ga_len += sizeof(regitem_T); return rp; } /* * Pop an item from the regstack. */ static void regstack_pop(char_u **scan) { regitem_T *rp; rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len) - 1; *scan = rp->rs_scan; regstack.ga_len -= sizeof(regitem_T); } /* * Save the current subexpr to "bp", so that they can be restored * later by restore_subexpr(). */ static void save_subexpr(regbehind_T *bp) { int i; // When "rex.need_clear_subexpr" is set we don't need to save the values, // only remember that this flag needs to be set again when restoring. bp->save_need_clear_subexpr = rex.need_clear_subexpr; if (!rex.need_clear_subexpr) { for (i = 0; i < NSUBEXP; ++i) { if (REG_MULTI) { bp->save_start[i].se_u.pos = rex.reg_startpos[i]; bp->save_end[i].se_u.pos = rex.reg_endpos[i]; } else { bp->save_start[i].se_u.ptr = rex.reg_startp[i]; bp->save_end[i].se_u.ptr = rex.reg_endp[i]; } } } } /* * Restore the subexpr from "bp". */ static void restore_subexpr(regbehind_T *bp) { int i; // Only need to restore saved values when they are not to be cleared. rex.need_clear_subexpr = bp->save_need_clear_subexpr; if (!rex.need_clear_subexpr) { for (i = 0; i < NSUBEXP; ++i) { if (REG_MULTI) { rex.reg_startpos[i] = bp->save_start[i].se_u.pos; rex.reg_endpos[i] = bp->save_end[i].se_u.pos; } else { rex.reg_startp[i] = bp->save_start[i].se_u.ptr; rex.reg_endp[i] = bp->save_end[i].se_u.ptr; } } } } /* * regmatch - main matching routine * * Conceptually the strategy is simple: Check to see whether the current node * matches, push an item onto the regstack and loop to see whether the rest * matches, and then act accordingly. In practice we make some effort to * avoid using the regstack, in particular by going through "ordinary" nodes * (that don't need to know whether the rest of the match failed) by a nested * loop. * * Returns TRUE when there is a match. Leaves rex.input and rex.lnum just after * the last matched character. * Returns FALSE when there is no match. Leaves rex.input and rex.lnum in an * undefined state! */ static int regmatch( char_u *scan, // Current node. proftime_T *tm UNUSED, // timeout limit or NULL int *timed_out UNUSED) // flag set on timeout or NULL { char_u *next; // Next node. int op; int c; regitem_T *rp; int no; int status; // one of the RA_ values: #ifdef FEAT_RELTIME int tm_count = 0; #endif // Make "regstack" and "backpos" empty. They are allocated and freed in // bt_regexec_both() to reduce malloc()/free() calls. regstack.ga_len = 0; backpos.ga_len = 0; // Repeat until "regstack" is empty. for (;;) { // Some patterns may take a long time to match, e.g., "\([a-z]\+\)\+Q". // Allow interrupting them with CTRL-C. fast_breakcheck(); #ifdef DEBUG if (scan != NULL && regnarrate) { mch_errmsg((char *)regprop(scan)); mch_errmsg("(\n"); } #endif // Repeat for items that can be matched sequentially, without using the // regstack. for (;;) { if (got_int || scan == NULL) { status = RA_FAIL; break; } #ifdef FEAT_RELTIME // Check for timeout once in a 100 times to avoid overhead. if (tm != NULL && ++tm_count == 100) { tm_count = 0; if (profile_passed_limit(tm)) { if (timed_out != NULL) *timed_out = TRUE; status = RA_FAIL; break; } } #endif status = RA_CONT; #ifdef DEBUG if (regnarrate) { mch_errmsg((char *)regprop(scan)); mch_errmsg("...\n"); # ifdef FEAT_SYN_HL if (re_extmatch_in != NULL) { int i; mch_errmsg(_("External submatches:\n")); for (i = 0; i < NSUBEXP; i++) { mch_errmsg(" \""); if (re_extmatch_in->matches[i] != NULL) mch_errmsg((char *)re_extmatch_in->matches[i]); mch_errmsg("\"\n"); } } # endif } #endif next = regnext(scan); op = OP(scan); // Check for character class with NL added. if (!rex.reg_line_lbr && WITH_NL(op) && REG_MULTI && *rex.input == NUL && rex.lnum <= rex.reg_maxline) { reg_nextline(); } else if (rex.reg_line_lbr && WITH_NL(op) && *rex.input == '\n') { ADVANCE_REGINPUT(); } else { if (WITH_NL(op)) op -= ADD_NL; if (has_mbyte) c = (*mb_ptr2char)(rex.input); else c = *rex.input; switch (op) { case BOL: if (rex.input != rex.line) status = RA_NOMATCH; break; case EOL: if (c != NUL) status = RA_NOMATCH; break; case RE_BOF: // We're not at the beginning of the file when below the first // line where we started, not at the start of the line or we // didn't start at the first line of the buffer. if (rex.lnum != 0 || rex.input != rex.line || (REG_MULTI && rex.reg_firstlnum > 1)) status = RA_NOMATCH; break; case RE_EOF: if (rex.lnum != rex.reg_maxline || c != NUL) status = RA_NOMATCH; break; case CURSOR: // Check if the buffer is in a window and compare the // rex.reg_win->w_cursor position to the match position. if (rex.reg_win == NULL || (rex.lnum + rex.reg_firstlnum != rex.reg_win->w_cursor.lnum) || ((colnr_T)(rex.input - rex.line) != rex.reg_win->w_cursor.col)) status = RA_NOMATCH; break; case RE_MARK: // Compare the mark position to the match position. { int mark = OPERAND(scan)[0]; int cmp = OPERAND(scan)[1]; pos_T *pos; pos = getmark_buf(rex.reg_buf, mark, FALSE); if (pos == NULL // mark doesn't exist || pos->lnum <= 0 // mark isn't set in reg_buf || (pos->lnum == rex.lnum + rex.reg_firstlnum ? (pos->col == (colnr_T)(rex.input - rex.line) ? (cmp == '<' || cmp == '>') : (pos->col < (colnr_T)(rex.input - rex.line) ? cmp != '>' : cmp != '<')) : (pos->lnum < rex.lnum + rex.reg_firstlnum ? cmp != '>' : cmp != '<'))) status = RA_NOMATCH; } break; case RE_VISUAL: if (!reg_match_visual()) status = RA_NOMATCH; break; case RE_LNUM: if (!REG_MULTI || !re_num_cmp((long_u)(rex.lnum + rex.reg_firstlnum), scan)) status = RA_NOMATCH; break; case RE_COL: if (!re_num_cmp((long_u)(rex.input - rex.line) + 1, scan)) status = RA_NOMATCH; break; case RE_VCOL: if (!re_num_cmp((long_u)win_linetabsize( rex.reg_win == NULL ? curwin : rex.reg_win, rex.line, (colnr_T)(rex.input - rex.line)) + 1, scan)) status = RA_NOMATCH; break; case BOW: // \<word; rex.input points to w if (c == NUL) // Can't match at end of line status = RA_NOMATCH; else if (has_mbyte) { int this_class; // Get class of current and previous char (if it exists). this_class = mb_get_class_buf(rex.input, rex.reg_buf); if (this_class <= 1) status = RA_NOMATCH; // not on a word at all else if (reg_prev_class() == this_class) status = RA_NOMATCH; // previous char is in same word } else { if (!vim_iswordc_buf(c, rex.reg_buf) || (rex.input > rex.line && vim_iswordc_buf(rex.input[-1], rex.reg_buf))) status = RA_NOMATCH; } break; case EOW: // word\>; rex.input points after d if (rex.input == rex.line) // Can't match at start of line status = RA_NOMATCH; else if (has_mbyte) { int this_class, prev_class; // Get class of current and previous char (if it exists). this_class = mb_get_class_buf(rex.input, rex.reg_buf); prev_class = reg_prev_class(); if (this_class == prev_class || prev_class == 0 || prev_class == 1) status = RA_NOMATCH; } else { if (!vim_iswordc_buf(rex.input[-1], rex.reg_buf) || (rex.input[0] != NUL && vim_iswordc_buf(c, rex.reg_buf))) status = RA_NOMATCH; } break; // Matched with EOW case ANY: // ANY does not match new lines. if (c == NUL) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case IDENT: if (!vim_isIDc(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case SIDENT: if (VIM_ISDIGIT(*rex.input) || !vim_isIDc(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case KWORD: if (!vim_iswordp_buf(rex.input, rex.reg_buf)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case SKWORD: if (VIM_ISDIGIT(*rex.input) || !vim_iswordp_buf(rex.input, rex.reg_buf)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case FNAME: if (!vim_isfilec(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case SFNAME: if (VIM_ISDIGIT(*rex.input) || !vim_isfilec(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case PRINT: if (!vim_isprintc(PTR2CHAR(rex.input))) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case SPRINT: if (VIM_ISDIGIT(*rex.input) || !vim_isprintc(PTR2CHAR(rex.input))) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case WHITE: if (!VIM_ISWHITE(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NWHITE: if (c == NUL || VIM_ISWHITE(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case DIGIT: if (!ri_digit(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NDIGIT: if (c == NUL || ri_digit(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case HEX: if (!ri_hex(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NHEX: if (c == NUL || ri_hex(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case OCTAL: if (!ri_octal(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NOCTAL: if (c == NUL || ri_octal(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case WORD: if (!ri_word(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NWORD: if (c == NUL || ri_word(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case HEAD: if (!ri_head(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NHEAD: if (c == NUL || ri_head(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case ALPHA: if (!ri_alpha(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NALPHA: if (c == NUL || ri_alpha(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case LOWER: if (!ri_lower(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NLOWER: if (c == NUL || ri_lower(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case UPPER: if (!ri_upper(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NUPPER: if (c == NUL || ri_upper(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case EXACTLY: { int len; char_u *opnd; opnd = OPERAND(scan); // Inline the first byte, for speed. if (*opnd != *rex.input && (!rex.reg_ic || (!enc_utf8 && MB_TOLOWER(*opnd) != MB_TOLOWER(*rex.input)))) status = RA_NOMATCH; else if (*opnd == NUL) { // match empty string always works; happens when "~" is // empty. } else { if (opnd[1] == NUL && !(enc_utf8 && rex.reg_ic)) { len = 1; // matched a single byte above } else { // Need to match first byte again for multi-byte. len = (int)STRLEN(opnd); if (cstrncmp(opnd, rex.input, &len) != 0) status = RA_NOMATCH; } // Check for following composing character, unless %C // follows (skips over all composing chars). if (status != RA_NOMATCH && enc_utf8 && UTF_COMPOSINGLIKE(rex.input, rex.input + len) && !rex.reg_icombine && OP(next) != RE_COMPOSING) { // raaron: This code makes a composing character get // ignored, which is the correct behavior (sometimes) // for voweled Hebrew texts. status = RA_NOMATCH; } if (status != RA_NOMATCH) rex.input += len; } } break; case ANYOF: case ANYBUT: if (c == NUL) status = RA_NOMATCH; else if ((cstrchr(OPERAND(scan), c) == NULL) == (op == ANYOF)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case MULTIBYTECODE: if (has_mbyte) { int i, len; char_u *opnd; int opndc = 0, inpc; opnd = OPERAND(scan); // Safety check (just in case 'encoding' was changed since // compiling the program). if ((len = (*mb_ptr2len)(opnd)) < 2) { status = RA_NOMATCH; break; } if (enc_utf8) opndc = utf_ptr2char(opnd); if (enc_utf8 && utf_iscomposing(opndc)) { // When only a composing char is given match at any // position where that composing char appears. status = RA_NOMATCH; for (i = 0; rex.input[i] != NUL; i += utf_ptr2len(rex.input + i)) { inpc = utf_ptr2char(rex.input + i); if (!utf_iscomposing(inpc)) { if (i > 0) break; } else if (opndc == inpc) { // Include all following composing chars. len = i + utfc_ptr2len(rex.input + i); status = RA_MATCH; break; } } } else for (i = 0; i < len; ++i) if (opnd[i] != rex.input[i]) { status = RA_NOMATCH; break; } rex.input += len; } else status = RA_NOMATCH; break; case RE_COMPOSING: if (enc_utf8) { // Skip composing characters. while (utf_iscomposing(utf_ptr2char(rex.input))) MB_CPTR_ADV(rex.input); } break; case NOTHING: break; case BACK: { int i; backpos_T *bp; // When we run into BACK we need to check if we don't keep // looping without matching any input. The second and later // times a BACK is encountered it fails if the input is still // at the same position as the previous time. // The positions are stored in "backpos" and found by the // current value of "scan", the position in the RE program. bp = (backpos_T *)backpos.ga_data; for (i = 0; i < backpos.ga_len; ++i) if (bp[i].bp_scan == scan) break; if (i == backpos.ga_len) { // First time at this BACK, make room to store the pos. if (ga_grow(&backpos, 1) == FAIL) status = RA_FAIL; else { // get "ga_data" again, it may have changed bp = (backpos_T *)backpos.ga_data; bp[i].bp_scan = scan; ++backpos.ga_len; } } else if (reg_save_equal(&bp[i].bp_pos)) // Still at same position as last time, fail. status = RA_NOMATCH; if (status != RA_FAIL && status != RA_NOMATCH) reg_save(&bp[i].bp_pos, &backpos); } break; case MOPEN + 0: // Match start: \zs case MOPEN + 1: // \( case MOPEN + 2: case MOPEN + 3: case MOPEN + 4: case MOPEN + 5: case MOPEN + 6: case MOPEN + 7: case MOPEN + 8: case MOPEN + 9: { no = op - MOPEN; cleanup_subexpr(); rp = regstack_push(RS_MOPEN, scan); if (rp == NULL) status = RA_FAIL; else { rp->rs_no = no; save_se(&rp->rs_un.sesave, &rex.reg_startpos[no], &rex.reg_startp[no]); // We simply continue and handle the result when done. } } break; case NOPEN: // \%( case NCLOSE: // \) after \%( if (regstack_push(RS_NOPEN, scan) == NULL) status = RA_FAIL; // We simply continue and handle the result when done. break; #ifdef FEAT_SYN_HL case ZOPEN + 1: case ZOPEN + 2: case ZOPEN + 3: case ZOPEN + 4: case ZOPEN + 5: case ZOPEN + 6: case ZOPEN + 7: case ZOPEN + 8: case ZOPEN + 9: { no = op - ZOPEN; cleanup_zsubexpr(); rp = regstack_push(RS_ZOPEN, scan); if (rp == NULL) status = RA_FAIL; else { rp->rs_no = no; save_se(&rp->rs_un.sesave, ®_startzpos[no], ®_startzp[no]); // We simply continue and handle the result when done. } } break; #endif case MCLOSE + 0: // Match end: \ze case MCLOSE + 1: // \) case MCLOSE + 2: case MCLOSE + 3: case MCLOSE + 4: case MCLOSE + 5: case MCLOSE + 6: case MCLOSE + 7: case MCLOSE + 8: case MCLOSE + 9: { no = op - MCLOSE; cleanup_subexpr(); rp = regstack_push(RS_MCLOSE, scan); if (rp == NULL) status = RA_FAIL; else { rp->rs_no = no; save_se(&rp->rs_un.sesave, &rex.reg_endpos[no], &rex.reg_endp[no]); // We simply continue and handle the result when done. } } break; #ifdef FEAT_SYN_HL case ZCLOSE + 1: // \) after \z( case ZCLOSE + 2: case ZCLOSE + 3: case ZCLOSE + 4: case ZCLOSE + 5: case ZCLOSE + 6: case ZCLOSE + 7: case ZCLOSE + 8: case ZCLOSE + 9: { no = op - ZCLOSE; cleanup_zsubexpr(); rp = regstack_push(RS_ZCLOSE, scan); if (rp == NULL) status = RA_FAIL; else { rp->rs_no = no; save_se(&rp->rs_un.sesave, ®_endzpos[no], ®_endzp[no]); // We simply continue and handle the result when done. } } break; #endif case BACKREF + 1: case BACKREF + 2: case BACKREF + 3: case BACKREF + 4: case BACKREF + 5: case BACKREF + 6: case BACKREF + 7: case BACKREF + 8: case BACKREF + 9: { int len; no = op - BACKREF; cleanup_subexpr(); if (!REG_MULTI) // Single-line regexp { if (rex.reg_startp[no] == NULL || rex.reg_endp[no] == NULL) { // Backref was not set: Match an empty string. len = 0; } else { // Compare current input with back-ref in the same // line. len = (int)(rex.reg_endp[no] - rex.reg_startp[no]); if (cstrncmp(rex.reg_startp[no], rex.input, &len) != 0) status = RA_NOMATCH; } } else // Multi-line regexp { if (rex.reg_startpos[no].lnum < 0 || rex.reg_endpos[no].lnum < 0) { // Backref was not set: Match an empty string. len = 0; } else { if (rex.reg_startpos[no].lnum == rex.lnum && rex.reg_endpos[no].lnum == rex.lnum) { // Compare back-ref within the current line. len = rex.reg_endpos[no].col - rex.reg_startpos[no].col; if (cstrncmp(rex.line + rex.reg_startpos[no].col, rex.input, &len) != 0) status = RA_NOMATCH; } else { // Messy situation: Need to compare between two // lines. int r = match_with_backref( rex.reg_startpos[no].lnum, rex.reg_startpos[no].col, rex.reg_endpos[no].lnum, rex.reg_endpos[no].col, &len); if (r != RA_MATCH) status = r; } } } // Matched the backref, skip over it. rex.input += len; } break; #ifdef FEAT_SYN_HL case ZREF + 1: case ZREF + 2: case ZREF + 3: case ZREF + 4: case ZREF + 5: case ZREF + 6: case ZREF + 7: case ZREF + 8: case ZREF + 9: { int len; cleanup_zsubexpr(); no = op - ZREF; if (re_extmatch_in != NULL && re_extmatch_in->matches[no] != NULL) { len = (int)STRLEN(re_extmatch_in->matches[no]); if (cstrncmp(re_extmatch_in->matches[no], rex.input, &len) != 0) status = RA_NOMATCH; else rex.input += len; } else { // Backref was not set: Match an empty string. } } break; #endif case BRANCH: { if (OP(next) != BRANCH) // No choice. next = OPERAND(scan); // Avoid recursion. else { rp = regstack_push(RS_BRANCH, scan); if (rp == NULL) status = RA_FAIL; else status = RA_BREAK; // rest is below } } break; case BRACE_LIMITS: { if (OP(next) == BRACE_SIMPLE) { bl_minval = OPERAND_MIN(scan); bl_maxval = OPERAND_MAX(scan); } else if (OP(next) >= BRACE_COMPLEX && OP(next) < BRACE_COMPLEX + 10) { no = OP(next) - BRACE_COMPLEX; brace_min[no] = OPERAND_MIN(scan); brace_max[no] = OPERAND_MAX(scan); brace_count[no] = 0; } else { internal_error("BRACE_LIMITS"); status = RA_FAIL; } } break; case BRACE_COMPLEX + 0: case BRACE_COMPLEX + 1: case BRACE_COMPLEX + 2: case BRACE_COMPLEX + 3: case BRACE_COMPLEX + 4: case BRACE_COMPLEX + 5: case BRACE_COMPLEX + 6: case BRACE_COMPLEX + 7: case BRACE_COMPLEX + 8: case BRACE_COMPLEX + 9: { no = op - BRACE_COMPLEX; ++brace_count[no]; // If not matched enough times yet, try one more if (brace_count[no] <= (brace_min[no] <= brace_max[no] ? brace_min[no] : brace_max[no])) { rp = regstack_push(RS_BRCPLX_MORE, scan); if (rp == NULL) status = RA_FAIL; else { rp->rs_no = no; reg_save(&rp->rs_un.regsave, &backpos); next = OPERAND(scan); // We continue and handle the result when done. } break; } // If matched enough times, may try matching some more if (brace_min[no] <= brace_max[no]) { // Range is the normal way around, use longest match if (brace_count[no] <= brace_max[no]) { rp = regstack_push(RS_BRCPLX_LONG, scan); if (rp == NULL) status = RA_FAIL; else { rp->rs_no = no; reg_save(&rp->rs_un.regsave, &backpos); next = OPERAND(scan); // We continue and handle the result when done. } } } else { // Range is backwards, use shortest match first if (brace_count[no] <= brace_min[no]) { rp = regstack_push(RS_BRCPLX_SHORT, scan); if (rp == NULL) status = RA_FAIL; else { reg_save(&rp->rs_un.regsave, &backpos); // We continue and handle the result when done. } } } } break; case BRACE_SIMPLE: case STAR: case PLUS: { regstar_T rst; // Lookahead to avoid useless match attempts when we know // what character comes next. if (OP(next) == EXACTLY) { rst.nextb = *OPERAND(next); if (rex.reg_ic) { if (MB_ISUPPER(rst.nextb)) rst.nextb_ic = MB_TOLOWER(rst.nextb); else rst.nextb_ic = MB_TOUPPER(rst.nextb); } else rst.nextb_ic = rst.nextb; } else { rst.nextb = NUL; rst.nextb_ic = NUL; } if (op != BRACE_SIMPLE) { rst.minval = (op == STAR) ? 0 : 1; rst.maxval = MAX_LIMIT; } else { rst.minval = bl_minval; rst.maxval = bl_maxval; } // When maxval > minval, try matching as much as possible, up // to maxval. When maxval < minval, try matching at least the // minimal number (since the range is backwards, that's also // maxval!). rst.count = regrepeat(OPERAND(scan), rst.maxval); if (got_int) { status = RA_FAIL; break; } if (rst.minval <= rst.maxval ? rst.count >= rst.minval : rst.count >= rst.maxval) { // It could match. Prepare for trying to match what // follows. The code is below. Parameters are stored in // a regstar_T on the regstack. if ((long)((unsigned)regstack.ga_len >> 10) >= p_mmp) { emsg(_(e_maxmempat)); status = RA_FAIL; } else if (ga_grow(®stack, sizeof(regstar_T)) == FAIL) status = RA_FAIL; else { regstack.ga_len += sizeof(regstar_T); rp = regstack_push(rst.minval <= rst.maxval ? RS_STAR_LONG : RS_STAR_SHORT, scan); if (rp == NULL) status = RA_FAIL; else { *(((regstar_T *)rp) - 1) = rst; status = RA_BREAK; // skip the restore bits } } } else status = RA_NOMATCH; } break; case NOMATCH: case MATCH: case SUBPAT: rp = regstack_push(RS_NOMATCH, scan); if (rp == NULL) status = RA_FAIL; else { rp->rs_no = op; reg_save(&rp->rs_un.regsave, &backpos); next = OPERAND(scan); // We continue and handle the result when done. } break; case BEHIND: case NOBEHIND: // Need a bit of room to store extra positions. if ((long)((unsigned)regstack.ga_len >> 10) >= p_mmp) { emsg(_(e_maxmempat)); status = RA_FAIL; } else if (ga_grow(®stack, sizeof(regbehind_T)) == FAIL) status = RA_FAIL; else { regstack.ga_len += sizeof(regbehind_T); rp = regstack_push(RS_BEHIND1, scan); if (rp == NULL) status = RA_FAIL; else { // Need to save the subexpr to be able to restore them // when there is a match but we don't use it. save_subexpr(((regbehind_T *)rp) - 1); rp->rs_no = op; reg_save(&rp->rs_un.regsave, &backpos); // First try if what follows matches. If it does then we // check the behind match by looping. } } break; case BHPOS: if (REG_MULTI) { if (behind_pos.rs_u.pos.col != (colnr_T)(rex.input - rex.line) || behind_pos.rs_u.pos.lnum != rex.lnum) status = RA_NOMATCH; } else if (behind_pos.rs_u.ptr != rex.input) status = RA_NOMATCH; break; case NEWL: if ((c != NUL || !REG_MULTI || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) && (c != '\n' || !rex.reg_line_lbr)) status = RA_NOMATCH; else if (rex.reg_line_lbr) ADVANCE_REGINPUT(); else reg_nextline(); break; case END: status = RA_MATCH; // Success! break; default: emsg(_(e_re_corr)); #ifdef DEBUG printf("Illegal op code %d\n", op); #endif status = RA_FAIL; break; } } // If we can't continue sequentially, break the inner loop. if (status != RA_CONT) break; // Continue in inner loop, advance to next item. scan = next; } // end of inner loop // If there is something on the regstack execute the code for the state. // If the state is popped then loop and use the older state. while (regstack.ga_len > 0 && status != RA_FAIL) { rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len) - 1; switch (rp->rs_state) { case RS_NOPEN: // Result is passed on as-is, simply pop the state. regstack_pop(&scan); break; case RS_MOPEN: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) restore_se(&rp->rs_un.sesave, &rex.reg_startpos[rp->rs_no], &rex.reg_startp[rp->rs_no]); regstack_pop(&scan); break; #ifdef FEAT_SYN_HL case RS_ZOPEN: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) restore_se(&rp->rs_un.sesave, ®_startzpos[rp->rs_no], ®_startzp[rp->rs_no]); regstack_pop(&scan); break; #endif case RS_MCLOSE: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) restore_se(&rp->rs_un.sesave, &rex.reg_endpos[rp->rs_no], &rex.reg_endp[rp->rs_no]); regstack_pop(&scan); break; #ifdef FEAT_SYN_HL case RS_ZCLOSE: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) restore_se(&rp->rs_un.sesave, ®_endzpos[rp->rs_no], ®_endzp[rp->rs_no]); regstack_pop(&scan); break; #endif case RS_BRANCH: if (status == RA_MATCH) // this branch matched, use it regstack_pop(&scan); else { if (status != RA_BREAK) { // After a non-matching branch: try next one. reg_restore(&rp->rs_un.regsave, &backpos); scan = rp->rs_scan; } if (scan == NULL || OP(scan) != BRANCH) { // no more branches, didn't find a match status = RA_NOMATCH; regstack_pop(&scan); } else { // Prepare to try a branch. rp->rs_scan = regnext(scan); reg_save(&rp->rs_un.regsave, &backpos); scan = OPERAND(scan); } } break; case RS_BRCPLX_MORE: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) { reg_restore(&rp->rs_un.regsave, &backpos); --brace_count[rp->rs_no]; // decrement match count } regstack_pop(&scan); break; case RS_BRCPLX_LONG: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) { // There was no match, but we did find enough matches. reg_restore(&rp->rs_un.regsave, &backpos); --brace_count[rp->rs_no]; // continue with the items after "\{}" status = RA_CONT; } regstack_pop(&scan); if (status == RA_CONT) scan = regnext(scan); break; case RS_BRCPLX_SHORT: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) // There was no match, try to match one more item. reg_restore(&rp->rs_un.regsave, &backpos); regstack_pop(&scan); if (status == RA_NOMATCH) { scan = OPERAND(scan); status = RA_CONT; } break; case RS_NOMATCH: // Pop the state. If the operand matches for NOMATCH or // doesn't match for MATCH/SUBPAT, we fail. Otherwise backup, // except for SUBPAT, and continue with the next item. if (status == (rp->rs_no == NOMATCH ? RA_MATCH : RA_NOMATCH)) status = RA_NOMATCH; else { status = RA_CONT; if (rp->rs_no != SUBPAT) // zero-width reg_restore(&rp->rs_un.regsave, &backpos); } regstack_pop(&scan); if (status == RA_CONT) scan = regnext(scan); break; case RS_BEHIND1: if (status == RA_NOMATCH) { regstack_pop(&scan); regstack.ga_len -= sizeof(regbehind_T); } else { // The stuff after BEHIND/NOBEHIND matches. Now try if // the behind part does (not) match before the current // position in the input. This must be done at every // position in the input and checking if the match ends at // the current position. // save the position after the found match for next reg_save(&(((regbehind_T *)rp) - 1)->save_after, &backpos); // Start looking for a match with operand at the current // position. Go back one character until we find the // result, hitting the start of the line or the previous // line (for multi-line matching). // Set behind_pos to where the match should end, BHPOS // will match it. Save the current value. (((regbehind_T *)rp) - 1)->save_behind = behind_pos; behind_pos = rp->rs_un.regsave; rp->rs_state = RS_BEHIND2; reg_restore(&rp->rs_un.regsave, &backpos); scan = OPERAND(rp->rs_scan) + 4; } break; case RS_BEHIND2: // Looping for BEHIND / NOBEHIND match. if (status == RA_MATCH && reg_save_equal(&behind_pos)) { // found a match that ends where "next" started behind_pos = (((regbehind_T *)rp) - 1)->save_behind; if (rp->rs_no == BEHIND) reg_restore(&(((regbehind_T *)rp) - 1)->save_after, &backpos); else { // But we didn't want a match. Need to restore the // subexpr, because what follows matched, so they have // been set. status = RA_NOMATCH; restore_subexpr(((regbehind_T *)rp) - 1); } regstack_pop(&scan); regstack.ga_len -= sizeof(regbehind_T); } else { long limit; // No match or a match that doesn't end where we want it: Go // back one character. May go to previous line once. no = OK; limit = OPERAND_MIN(rp->rs_scan); if (REG_MULTI) { if (limit > 0 && ((rp->rs_un.regsave.rs_u.pos.lnum < behind_pos.rs_u.pos.lnum ? (colnr_T)STRLEN(rex.line) : behind_pos.rs_u.pos.col) - rp->rs_un.regsave.rs_u.pos.col >= limit)) no = FAIL; else if (rp->rs_un.regsave.rs_u.pos.col == 0) { if (rp->rs_un.regsave.rs_u.pos.lnum < behind_pos.rs_u.pos.lnum || reg_getline( --rp->rs_un.regsave.rs_u.pos.lnum) == NULL) no = FAIL; else { reg_restore(&rp->rs_un.regsave, &backpos); rp->rs_un.regsave.rs_u.pos.col = (colnr_T)STRLEN(rex.line); } } else { if (has_mbyte) { char_u *line = reg_getline(rp->rs_un.regsave.rs_u.pos.lnum); rp->rs_un.regsave.rs_u.pos.col -= (*mb_head_off)(line, line + rp->rs_un.regsave.rs_u.pos.col - 1) + 1; } else --rp->rs_un.regsave.rs_u.pos.col; } } else { if (rp->rs_un.regsave.rs_u.ptr == rex.line) no = FAIL; else { MB_PTR_BACK(rex.line, rp->rs_un.regsave.rs_u.ptr); if (limit > 0 && (long)(behind_pos.rs_u.ptr - rp->rs_un.regsave.rs_u.ptr) > limit) no = FAIL; } } if (no == OK) { // Advanced, prepare for finding match again. reg_restore(&rp->rs_un.regsave, &backpos); scan = OPERAND(rp->rs_scan) + 4; if (status == RA_MATCH) { // We did match, so subexpr may have been changed, // need to restore them for the next try. status = RA_NOMATCH; restore_subexpr(((regbehind_T *)rp) - 1); } } else { // Can't advance. For NOBEHIND that's a match. behind_pos = (((regbehind_T *)rp) - 1)->save_behind; if (rp->rs_no == NOBEHIND) { reg_restore(&(((regbehind_T *)rp) - 1)->save_after, &backpos); status = RA_MATCH; } else { // We do want a proper match. Need to restore the // subexpr if we had a match, because they may have // been set. if (status == RA_MATCH) { status = RA_NOMATCH; restore_subexpr(((regbehind_T *)rp) - 1); } } regstack_pop(&scan); regstack.ga_len -= sizeof(regbehind_T); } } break; case RS_STAR_LONG: case RS_STAR_SHORT: { regstar_T *rst = ((regstar_T *)rp) - 1; if (status == RA_MATCH) { regstack_pop(&scan); regstack.ga_len -= sizeof(regstar_T); break; } // Tried once already, restore input pointers. if (status != RA_BREAK) reg_restore(&rp->rs_un.regsave, &backpos); // Repeat until we found a position where it could match. for (;;) { if (status != RA_BREAK) { // Tried first position already, advance. if (rp->rs_state == RS_STAR_LONG) { // Trying for longest match, but couldn't or // didn't match -- back up one char. if (--rst->count < rst->minval) break; if (rex.input == rex.line) { // backup to last char of previous line --rex.lnum; rex.line = reg_getline(rex.lnum); // Just in case regrepeat() didn't count // right. if (rex.line == NULL) break; rex.input = rex.line + STRLEN(rex.line); fast_breakcheck(); } else MB_PTR_BACK(rex.line, rex.input); } else { // Range is backwards, use shortest match first. // Careful: maxval and minval are exchanged! // Couldn't or didn't match: try advancing one // char. if (rst->count == rst->minval || regrepeat(OPERAND(rp->rs_scan), 1L) == 0) break; ++rst->count; } if (got_int) break; } else status = RA_NOMATCH; // If it could match, try it. if (rst->nextb == NUL || *rex.input == rst->nextb || *rex.input == rst->nextb_ic) { reg_save(&rp->rs_un.regsave, &backpos); scan = regnext(rp->rs_scan); status = RA_CONT; break; } } if (status != RA_CONT) { // Failed. regstack_pop(&scan); regstack.ga_len -= sizeof(regstar_T); status = RA_NOMATCH; } } break; } // If we want to continue the inner loop or didn't pop a state // continue matching loop if (status == RA_CONT || rp == (regitem_T *) ((char *)regstack.ga_data + regstack.ga_len) - 1) break; } // May need to continue with the inner loop, starting at "scan". if (status == RA_CONT) continue; // If the regstack is empty or something failed we are done. if (regstack.ga_len == 0 || status == RA_FAIL) { if (scan == NULL) { // We get here only if there's trouble -- normally "case END" is // the terminating point. emsg(_(e_re_corr)); #ifdef DEBUG printf("Premature EOL\n"); #endif } return (status == RA_MATCH); } } // End of loop until the regstack is empty. // NOTREACHED } /* * regtry - try match of "prog" with at rex.line["col"]. * Returns 0 for failure, number of lines contained in the match otherwise. */ static long regtry( bt_regprog_T *prog, colnr_T col, proftime_T *tm, // timeout limit or NULL int *timed_out) // flag set on timeout or NULL { rex.input = rex.line + col; rex.need_clear_subexpr = TRUE; #ifdef FEAT_SYN_HL // Clear the external match subpointers if necessary. rex.need_clear_zsubexpr = (prog->reghasz == REX_SET); #endif if (regmatch(prog->program + 1, tm, timed_out) == 0) return 0; cleanup_subexpr(); if (REG_MULTI) { if (rex.reg_startpos[0].lnum < 0) { rex.reg_startpos[0].lnum = 0; rex.reg_startpos[0].col = col; } if (rex.reg_endpos[0].lnum < 0) { rex.reg_endpos[0].lnum = rex.lnum; rex.reg_endpos[0].col = (int)(rex.input - rex.line); } else // Use line number of "\ze". rex.lnum = rex.reg_endpos[0].lnum; } else { if (rex.reg_startp[0] == NULL) rex.reg_startp[0] = rex.line + col; if (rex.reg_endp[0] == NULL) rex.reg_endp[0] = rex.input; } #ifdef FEAT_SYN_HL // Package any found \z(...\) matches for export. Default is none. unref_extmatch(re_extmatch_out); re_extmatch_out = NULL; if (prog->reghasz == REX_SET) { int i; cleanup_zsubexpr(); re_extmatch_out = make_extmatch(); if (re_extmatch_out == NULL) return 0; for (i = 0; i < NSUBEXP; i++) { if (REG_MULTI) { // Only accept single line matches. if (reg_startzpos[i].lnum >= 0 && reg_endzpos[i].lnum == reg_startzpos[i].lnum && reg_endzpos[i].col >= reg_startzpos[i].col) re_extmatch_out->matches[i] = vim_strnsave(reg_getline(reg_startzpos[i].lnum) + reg_startzpos[i].col, reg_endzpos[i].col - reg_startzpos[i].col); } else { if (reg_startzp[i] != NULL && reg_endzp[i] != NULL) re_extmatch_out->matches[i] = vim_strnsave(reg_startzp[i], (int)(reg_endzp[i] - reg_startzp[i])); } } } #endif return 1 + rex.lnum; } /* * Match a regexp against a string ("line" points to the string) or multiple * lines ("line" is NULL, use reg_getline()). * Returns 0 for failure, number of lines contained in the match otherwise. */ static long bt_regexec_both( char_u *line, colnr_T col, // column to start looking for match proftime_T *tm, // timeout limit or NULL int *timed_out) // flag set on timeout or NULL { bt_regprog_T *prog; char_u *s; long retval = 0L; // Create "regstack" and "backpos" if they are not allocated yet. // We allocate *_INITIAL amount of bytes first and then set the grow size // to much bigger value to avoid many malloc calls in case of deep regular // expressions. if (regstack.ga_data == NULL) { // Use an item size of 1 byte, since we push different things // onto the regstack. ga_init2(®stack, 1, REGSTACK_INITIAL); (void)ga_grow(®stack, REGSTACK_INITIAL); regstack.ga_growsize = REGSTACK_INITIAL * 8; } if (backpos.ga_data == NULL) { ga_init2(&backpos, sizeof(backpos_T), BACKPOS_INITIAL); (void)ga_grow(&backpos, BACKPOS_INITIAL); backpos.ga_growsize = BACKPOS_INITIAL * 8; } if (REG_MULTI) { prog = (bt_regprog_T *)rex.reg_mmatch->regprog; line = reg_getline((linenr_T)0); rex.reg_startpos = rex.reg_mmatch->startpos; rex.reg_endpos = rex.reg_mmatch->endpos; } else { prog = (bt_regprog_T *)rex.reg_match->regprog; rex.reg_startp = rex.reg_match->startp; rex.reg_endp = rex.reg_match->endp; } // Be paranoid... if (prog == NULL || line == NULL) { emsg(_(e_null)); goto theend; } // Check validity of program. if (prog_magic_wrong()) goto theend; // If the start column is past the maximum column: no need to try. if (rex.reg_maxcol > 0 && col >= rex.reg_maxcol) goto theend; // If pattern contains "\c" or "\C": overrule value of rex.reg_ic if (prog->regflags & RF_ICASE) rex.reg_ic = TRUE; else if (prog->regflags & RF_NOICASE) rex.reg_ic = FALSE; // If pattern contains "\Z" overrule value of rex.reg_icombine if (prog->regflags & RF_ICOMBINE) rex.reg_icombine = TRUE; // If there is a "must appear" string, look for it. if (prog->regmust != NULL) { int c; if (has_mbyte) c = (*mb_ptr2char)(prog->regmust); else c = *prog->regmust; s = line + col; // This is used very often, esp. for ":global". Use three versions of // the loop to avoid overhead of conditions. if (!rex.reg_ic && !has_mbyte) while ((s = vim_strbyte(s, c)) != NULL) { if (cstrncmp(s, prog->regmust, &prog->regmlen) == 0) break; // Found it. ++s; } else if (!rex.reg_ic || (!enc_utf8 && mb_char2len(c) > 1)) while ((s = vim_strchr(s, c)) != NULL) { if (cstrncmp(s, prog->regmust, &prog->regmlen) == 0) break; // Found it. MB_PTR_ADV(s); } else while ((s = cstrchr(s, c)) != NULL) { if (cstrncmp(s, prog->regmust, &prog->regmlen) == 0) break; // Found it. MB_PTR_ADV(s); } if (s == NULL) // Not present. goto theend; } rex.line = line; rex.lnum = 0; reg_toolong = FALSE; // Simplest case: Anchored match need be tried only once. if (prog->reganch) { int c; if (has_mbyte) c = (*mb_ptr2char)(rex.line + col); else c = rex.line[col]; if (prog->regstart == NUL || prog->regstart == c || (rex.reg_ic && (((enc_utf8 && utf_fold(prog->regstart) == utf_fold(c))) || (c < 255 && prog->regstart < 255 && MB_TOLOWER(prog->regstart) == MB_TOLOWER(c))))) retval = regtry(prog, col, tm, timed_out); else retval = 0; } else { #ifdef FEAT_RELTIME int tm_count = 0; #endif // Messy cases: unanchored match. while (!got_int) { if (prog->regstart != NUL) { // Skip until the char we know it must start with. // Used often, do some work to avoid call overhead. if (!rex.reg_ic && !has_mbyte) s = vim_strbyte(rex.line + col, prog->regstart); else s = cstrchr(rex.line + col, prog->regstart); if (s == NULL) { retval = 0; break; } col = (int)(s - rex.line); } // Check for maximum column to try. if (rex.reg_maxcol > 0 && col >= rex.reg_maxcol) { retval = 0; break; } retval = regtry(prog, col, tm, timed_out); if (retval > 0) break; // if not currently on the first line, get it again if (rex.lnum != 0) { rex.lnum = 0; rex.line = reg_getline((linenr_T)0); } if (rex.line[col] == NUL) break; if (has_mbyte) col += (*mb_ptr2len)(rex.line + col); else ++col; #ifdef FEAT_RELTIME // Check for timeout once in a twenty times to avoid overhead. if (tm != NULL && ++tm_count == 20) { tm_count = 0; if (profile_passed_limit(tm)) { if (timed_out != NULL) *timed_out = TRUE; break; } } #endif } } theend: // Free "reg_tofree" when it's a bit big. // Free regstack and backpos if they are bigger than their initial size. if (reg_tofreelen > 400) VIM_CLEAR(reg_tofree); if (regstack.ga_maxlen > REGSTACK_INITIAL) ga_clear(®stack); if (backpos.ga_maxlen > BACKPOS_INITIAL) ga_clear(&backpos); return retval; } /* * Match a regexp against a string. * "rmp->regprog" is a compiled regexp as returned by vim_regcomp(). * Uses curbuf for line count and 'iskeyword'. * if "line_lbr" is TRUE consider a "\n" in "line" to be a line break. * * Returns 0 for failure, number of lines contained in the match otherwise. */ static int bt_regexec_nl( regmatch_T *rmp, char_u *line, // string to match against colnr_T col, // column to start looking for match int line_lbr) { rex.reg_match = rmp; rex.reg_mmatch = NULL; rex.reg_maxline = 0; rex.reg_line_lbr = line_lbr; rex.reg_buf = curbuf; rex.reg_win = NULL; rex.reg_ic = rmp->rm_ic; rex.reg_icombine = FALSE; rex.reg_maxcol = 0; return bt_regexec_both(line, col, NULL, NULL); } /* * Match a regexp against multiple lines. * "rmp->regprog" is a compiled regexp as returned by vim_regcomp(). * Uses curbuf for line count and 'iskeyword'. * * Return zero if there is no match. Return number of lines contained in the * match otherwise. */ static long bt_regexec_multi( regmmatch_T *rmp, win_T *win, // window in which to search or NULL buf_T *buf, // buffer in which to search linenr_T lnum, // nr of line to start looking for match colnr_T col, // column to start looking for match proftime_T *tm, // timeout limit or NULL int *timed_out) // flag set on timeout or NULL { init_regexec_multi(rmp, win, buf, lnum); return bt_regexec_both(NULL, col, tm, timed_out); } /* * Compare a number with the operand of RE_LNUM, RE_COL or RE_VCOL. */ static int re_num_cmp(long_u val, char_u *scan) { long_u n = OPERAND_MIN(scan); if (OPERAND_CMP(scan) == '>') return val > n; if (OPERAND_CMP(scan) == '<') return val < n; return val == n; } #ifdef BT_REGEXP_DUMP /* * regdump - dump a regexp onto stdout in vaguely comprehensible form */ static void regdump(char_u *pattern, bt_regprog_T *r) { char_u *s; int op = EXACTLY; // Arbitrary non-END op. char_u *next; char_u *end = NULL; FILE *f; #ifdef BT_REGEXP_LOG f = fopen("bt_regexp_log.log", "a"); #else f = stdout; #endif if (f == NULL) return; fprintf(f, "-------------------------------------\n\r\nregcomp(%s):\r\n", pattern); s = r->program + 1; // Loop until we find the END that isn't before a referred next (an END // can also appear in a NOMATCH operand). while (op != END || s <= end) { op = OP(s); fprintf(f, "%2d%s", (int)(s - r->program), regprop(s)); // Where, what. next = regnext(s); if (next == NULL) // Next ptr. fprintf(f, "(0)"); else fprintf(f, "(%d)", (int)((s - r->program) + (next - s))); if (end < next) end = next; if (op == BRACE_LIMITS) { // Two ints fprintf(f, " minval %ld, maxval %ld", OPERAND_MIN(s), OPERAND_MAX(s)); s += 8; } else if (op == BEHIND || op == NOBEHIND) { // one int fprintf(f, " count %ld", OPERAND_MIN(s)); s += 4; } else if (op == RE_LNUM || op == RE_COL || op == RE_VCOL) { // one int plus comparator fprintf(f, " count %ld", OPERAND_MIN(s)); s += 5; } s += 3; if (op == ANYOF || op == ANYOF + ADD_NL || op == ANYBUT || op == ANYBUT + ADD_NL || op == EXACTLY) { // Literal string, where present. fprintf(f, "\nxxxxxxxxx\n"); while (*s != NUL) fprintf(f, "%c", *s++); fprintf(f, "\nxxxxxxxxx\n"); s++; } fprintf(f, "\r\n"); } // Header fields of interest. if (r->regstart != NUL) fprintf(f, "start `%s' 0x%x; ", r->regstart < 256 ? (char *)transchar(r->regstart) : "multibyte", r->regstart); if (r->reganch) fprintf(f, "anchored; "); if (r->regmust != NULL) fprintf(f, "must have \"%s\"", r->regmust); fprintf(f, "\r\n"); #ifdef BT_REGEXP_LOG fclose(f); #endif } #endif // BT_REGEXP_DUMP #ifdef DEBUG /* * regprop - printable representation of opcode */ static char_u * regprop(char_u *op) { char *p; static char buf[50]; STRCPY(buf, ":"); switch ((int) OP(op)) { case BOL: p = "BOL"; break; case EOL: p = "EOL"; break; case RE_BOF: p = "BOF"; break; case RE_EOF: p = "EOF"; break; case CURSOR: p = "CURSOR"; break; case RE_VISUAL: p = "RE_VISUAL"; break; case RE_LNUM: p = "RE_LNUM"; break; case RE_MARK: p = "RE_MARK"; break; case RE_COL: p = "RE_COL"; break; case RE_VCOL: p = "RE_VCOL"; break; case BOW: p = "BOW"; break; case EOW: p = "EOW"; break; case ANY: p = "ANY"; break; case ANY + ADD_NL: p = "ANY+NL"; break; case ANYOF: p = "ANYOF"; break; case ANYOF + ADD_NL: p = "ANYOF+NL"; break; case ANYBUT: p = "ANYBUT"; break; case ANYBUT + ADD_NL: p = "ANYBUT+NL"; break; case IDENT: p = "IDENT"; break; case IDENT + ADD_NL: p = "IDENT+NL"; break; case SIDENT: p = "SIDENT"; break; case SIDENT + ADD_NL: p = "SIDENT+NL"; break; case KWORD: p = "KWORD"; break; case KWORD + ADD_NL: p = "KWORD+NL"; break; case SKWORD: p = "SKWORD"; break; case SKWORD + ADD_NL: p = "SKWORD+NL"; break; case FNAME: p = "FNAME"; break; case FNAME + ADD_NL: p = "FNAME+NL"; break; case SFNAME: p = "SFNAME"; break; case SFNAME + ADD_NL: p = "SFNAME+NL"; break; case PRINT: p = "PRINT"; break; case PRINT + ADD_NL: p = "PRINT+NL"; break; case SPRINT: p = "SPRINT"; break; case SPRINT + ADD_NL: p = "SPRINT+NL"; break; case WHITE: p = "WHITE"; break; case WHITE + ADD_NL: p = "WHITE+NL"; break; case NWHITE: p = "NWHITE"; break; case NWHITE + ADD_NL: p = "NWHITE+NL"; break; case DIGIT: p = "DIGIT"; break; case DIGIT + ADD_NL: p = "DIGIT+NL"; break; case NDIGIT: p = "NDIGIT"; break; case NDIGIT + ADD_NL: p = "NDIGIT+NL"; break; case HEX: p = "HEX"; break; case HEX + ADD_NL: p = "HEX+NL"; break; case NHEX: p = "NHEX"; break; case NHEX + ADD_NL: p = "NHEX+NL"; break; case OCTAL: p = "OCTAL"; break; case OCTAL + ADD_NL: p = "OCTAL+NL"; break; case NOCTAL: p = "NOCTAL"; break; case NOCTAL + ADD_NL: p = "NOCTAL+NL"; break; case WORD: p = "WORD"; break; case WORD + ADD_NL: p = "WORD+NL"; break; case NWORD: p = "NWORD"; break; case NWORD + ADD_NL: p = "NWORD+NL"; break; case HEAD: p = "HEAD"; break; case HEAD + ADD_NL: p = "HEAD+NL"; break; case NHEAD: p = "NHEAD"; break; case NHEAD + ADD_NL: p = "NHEAD+NL"; break; case ALPHA: p = "ALPHA"; break; case ALPHA + ADD_NL: p = "ALPHA+NL"; break; case NALPHA: p = "NALPHA"; break; case NALPHA + ADD_NL: p = "NALPHA+NL"; break; case LOWER: p = "LOWER"; break; case LOWER + ADD_NL: p = "LOWER+NL"; break; case NLOWER: p = "NLOWER"; break; case NLOWER + ADD_NL: p = "NLOWER+NL"; break; case UPPER: p = "UPPER"; break; case UPPER + ADD_NL: p = "UPPER+NL"; break; case NUPPER: p = "NUPPER"; break; case NUPPER + ADD_NL: p = "NUPPER+NL"; break; case BRANCH: p = "BRANCH"; break; case EXACTLY: p = "EXACTLY"; break; case NOTHING: p = "NOTHING"; break; case BACK: p = "BACK"; break; case END: p = "END"; break; case MOPEN + 0: p = "MATCH START"; break; case MOPEN + 1: case MOPEN + 2: case MOPEN + 3: case MOPEN + 4: case MOPEN + 5: case MOPEN + 6: case MOPEN + 7: case MOPEN + 8: case MOPEN + 9: sprintf(buf + STRLEN(buf), "MOPEN%d", OP(op) - MOPEN); p = NULL; break; case MCLOSE + 0: p = "MATCH END"; break; case MCLOSE + 1: case MCLOSE + 2: case MCLOSE + 3: case MCLOSE + 4: case MCLOSE + 5: case MCLOSE + 6: case MCLOSE + 7: case MCLOSE + 8: case MCLOSE + 9: sprintf(buf + STRLEN(buf), "MCLOSE%d", OP(op) - MCLOSE); p = NULL; break; case BACKREF + 1: case BACKREF + 2: case BACKREF + 3: case BACKREF + 4: case BACKREF + 5: case BACKREF + 6: case BACKREF + 7: case BACKREF + 8: case BACKREF + 9: sprintf(buf + STRLEN(buf), "BACKREF%d", OP(op) - BACKREF); p = NULL; break; case NOPEN: p = "NOPEN"; break; case NCLOSE: p = "NCLOSE"; break; #ifdef FEAT_SYN_HL case ZOPEN + 1: case ZOPEN + 2: case ZOPEN + 3: case ZOPEN + 4: case ZOPEN + 5: case ZOPEN + 6: case ZOPEN + 7: case ZOPEN + 8: case ZOPEN + 9: sprintf(buf + STRLEN(buf), "ZOPEN%d", OP(op) - ZOPEN); p = NULL; break; case ZCLOSE + 1: case ZCLOSE + 2: case ZCLOSE + 3: case ZCLOSE + 4: case ZCLOSE + 5: case ZCLOSE + 6: case ZCLOSE + 7: case ZCLOSE + 8: case ZCLOSE + 9: sprintf(buf + STRLEN(buf), "ZCLOSE%d", OP(op) - ZCLOSE); p = NULL; break; case ZREF + 1: case ZREF + 2: case ZREF + 3: case ZREF + 4: case ZREF + 5: case ZREF + 6: case ZREF + 7: case ZREF + 8: case ZREF + 9: sprintf(buf + STRLEN(buf), "ZREF%d", OP(op) - ZREF); p = NULL; break; #endif case STAR: p = "STAR"; break; case PLUS: p = "PLUS"; break; case NOMATCH: p = "NOMATCH"; break; case MATCH: p = "MATCH"; break; case BEHIND: p = "BEHIND"; break; case NOBEHIND: p = "NOBEHIND"; break; case SUBPAT: p = "SUBPAT"; break; case BRACE_LIMITS: p = "BRACE_LIMITS"; break; case BRACE_SIMPLE: p = "BRACE_SIMPLE"; break; case BRACE_COMPLEX + 0: case BRACE_COMPLEX + 1: case BRACE_COMPLEX + 2: case BRACE_COMPLEX + 3: case BRACE_COMPLEX + 4: case BRACE_COMPLEX + 5: case BRACE_COMPLEX + 6: case BRACE_COMPLEX + 7: case BRACE_COMPLEX + 8: case BRACE_COMPLEX + 9: sprintf(buf + STRLEN(buf), "BRACE_COMPLEX%d", OP(op) - BRACE_COMPLEX); p = NULL; break; case MULTIBYTECODE: p = "MULTIBYTECODE"; break; case NEWL: p = "NEWL"; break; default: sprintf(buf + STRLEN(buf), "corrupt %d", OP(op)); p = NULL; break; } if (p != NULL) STRCAT(buf, p); return (char_u *)buf; } #endif // DEBUG