Mercurial > vim
view src/channel.c @ 21454:c50b04b76bc2
Added tag v8.2.1277 for changeset 40210bb08e3f3e696b33154b2ec02e1debb66e3c
author | Bram Moolenaar <Bram@vim.org> |
---|---|
date | Thu, 23 Jul 2020 15:00:05 +0200 |
parents | 2c40e60017a8 |
children | 727820154b1a |
line wrap: on
line source
/* vi:set ts=8 sts=4 sw=4 noet: * * VIM - Vi IMproved by Bram Moolenaar * * Do ":help uganda" in Vim to read copying and usage conditions. * Do ":help credits" in Vim to see a list of people who contributed. */ /* * Implements communication through a socket or any file handle. */ #ifdef WIN32 // Must include winsock2.h before windows.h since it conflicts with winsock.h // (included in windows.h). # include <winsock2.h> # include <ws2tcpip.h> #endif #include "vim.h" #if defined(FEAT_JOB_CHANNEL) || defined(PROTO) // TRUE when netbeans is running with a GUI. #ifdef FEAT_GUI # define CH_HAS_GUI (gui.in_use || gui.starting) #endif // Note: when making changes here also adjust configure.ac. #ifdef MSWIN // WinSock API is separated from C API, thus we can't use read(), write(), // errno... # define SOCK_ERRNO errno = WSAGetLastError() # undef ECONNREFUSED # define ECONNREFUSED WSAECONNREFUSED # undef EWOULDBLOCK # define EWOULDBLOCK WSAEWOULDBLOCK # undef EINPROGRESS # define EINPROGRESS WSAEINPROGRESS # ifdef EINTR # undef EINTR # endif # define EINTR WSAEINTR # define sock_write(sd, buf, len) send((SOCKET)sd, buf, len, 0) # define sock_read(sd, buf, len) recv((SOCKET)sd, buf, len, 0) # define sock_close(sd) closesocket((SOCKET)sd) #else # include <netdb.h> # include <netinet/in.h> # include <arpa/inet.h> # include <sys/socket.h> # ifdef HAVE_LIBGEN_H # include <libgen.h> # endif # define SOCK_ERRNO # define sock_write(sd, buf, len) write(sd, buf, len) # define sock_read(sd, buf, len) read(sd, buf, len) # define sock_close(sd) close(sd) # define fd_read(fd, buf, len) read(fd, buf, len) # define fd_write(sd, buf, len) write(sd, buf, len) # define fd_close(sd) close(sd) #endif static void channel_read(channel_T *channel, ch_part_T part, char *func); static ch_mode_T channel_get_mode(channel_T *channel, ch_part_T part); static int channel_get_timeout(channel_T *channel, ch_part_T part); static ch_part_T channel_part_send(channel_T *channel); static ch_part_T channel_part_read(channel_T *channel); static void free_job_options(jobopt_T *opt); #define FOR_ALL_CHANNELS(ch) \ for ((ch) = first_channel; (ch) != NULL; (ch) = (ch)->ch_next) #define FOR_ALL_JOBS(job) \ for ((job) = first_job; (job) != NULL; (job) = (job)->jv_next) // Whether a redraw is needed for appending a line to a buffer. static int channel_need_redraw = FALSE; // Whether we are inside channel_parse_messages() or another situation where it // is safe to invoke callbacks. static int safe_to_invoke_callback = 0; static char *part_names[] = {"sock", "out", "err", "in"}; #ifdef MSWIN static int fd_read(sock_T fd, char *buf, size_t len) { HANDLE h = (HANDLE)fd; DWORD nread; if (!ReadFile(h, buf, (DWORD)len, &nread, NULL)) return -1; return (int)nread; } static int fd_write(sock_T fd, char *buf, size_t len) { size_t todo = len; HANDLE h = (HANDLE)fd; DWORD nwrite, size, done = 0; OVERLAPPED ov; while (todo > 0) { if (todo > MAX_NAMED_PIPE_SIZE) size = MAX_NAMED_PIPE_SIZE; else size = (DWORD)todo; // If the pipe overflows while the job does not read the data, // WriteFile() will block forever. This abandons the write. memset(&ov, 0, sizeof(ov)); nwrite = 0; if (!WriteFile(h, buf + done, size, &nwrite, &ov)) { DWORD err = GetLastError(); if (err != ERROR_IO_PENDING) return -1; if (!GetOverlappedResult(h, &ov, &nwrite, FALSE)) return -1; FlushFileBuffers(h); } else if (nwrite == 0) // WriteFile() returns TRUE but did not write anything. This causes // a hang, so bail out. break; todo -= nwrite; done += nwrite; } return (int)done; } static void fd_close(sock_T fd) { HANDLE h = (HANDLE)fd; CloseHandle(h); } #endif // Log file opened with ch_logfile(). static FILE *log_fd = NULL; #ifdef FEAT_RELTIME static proftime_T log_start; #endif void ch_logfile(char_u *fname, char_u *opt) { FILE *file = NULL; if (log_fd != NULL) { if (*fname != NUL) ch_log(NULL, "closing this logfile, opening %s", fname); else ch_log(NULL, "closing logfile"); fclose(log_fd); } if (*fname != NUL) { file = fopen((char *)fname, *opt == 'w' ? "w" : "a"); if (file == NULL) { semsg(_(e_notopen), fname); return; } } log_fd = file; if (log_fd != NULL) { fprintf(log_fd, "==== start log session ====\n"); #ifdef FEAT_RELTIME profile_start(&log_start); #endif } } int ch_log_active(void) { return log_fd != NULL; } static void ch_log_lead(const char *what, channel_T *ch, ch_part_T part) { if (log_fd != NULL) { #ifdef FEAT_RELTIME proftime_T log_now; profile_start(&log_now); profile_sub(&log_now, &log_start); fprintf(log_fd, "%s ", profile_msg(&log_now)); #endif if (ch != NULL) { if (part < PART_COUNT) fprintf(log_fd, "%son %d(%s): ", what, ch->ch_id, part_names[part]); else fprintf(log_fd, "%son %d: ", what, ch->ch_id); } else fprintf(log_fd, "%s: ", what); } } #ifndef PROTO // prototype is in proto.h void ch_log(channel_T *ch, const char *fmt, ...) { if (log_fd != NULL) { va_list ap; ch_log_lead("", ch, PART_COUNT); va_start(ap, fmt); vfprintf(log_fd, fmt, ap); va_end(ap); fputc('\n', log_fd); fflush(log_fd); did_repeated_msg = 0; } } #endif static void ch_error(channel_T *ch, const char *fmt, ...) #ifdef USE_PRINTF_FORMAT_ATTRIBUTE __attribute__((format(printf, 2, 3))) #endif ; static void ch_error(channel_T *ch, const char *fmt, ...) { if (log_fd != NULL) { va_list ap; ch_log_lead("ERR ", ch, PART_COUNT); va_start(ap, fmt); vfprintf(log_fd, fmt, ap); va_end(ap); fputc('\n', log_fd); fflush(log_fd); did_repeated_msg = 0; } } #ifdef MSWIN # undef PERROR # define PERROR(msg) (void)semsg("%s: %s", msg, strerror_win32(errno)) static char * strerror_win32(int eno) { static LPVOID msgbuf = NULL; char_u *ptr; if (msgbuf) { LocalFree(msgbuf); msgbuf = NULL; } FormatMessage( FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, eno, MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT), (LPTSTR) &msgbuf, 0, NULL); if (msgbuf != NULL) // chomp \r or \n for (ptr = (char_u *)msgbuf; *ptr; ptr++) switch (*ptr) { case '\r': STRMOVE(ptr, ptr + 1); ptr--; break; case '\n': if (*(ptr + 1) == '\0') *ptr = '\0'; else *ptr = ' '; break; } return msgbuf; } #endif /* * The list of all allocated channels. */ static channel_T *first_channel = NULL; static int next_ch_id = 0; /* * Allocate a new channel. The refcount is set to 1. * The channel isn't actually used until it is opened. * Returns NULL if out of memory. */ channel_T * add_channel(void) { ch_part_T part; channel_T *channel = ALLOC_CLEAR_ONE(channel_T); if (channel == NULL) return NULL; channel->ch_id = next_ch_id++; ch_log(channel, "Created channel"); for (part = PART_SOCK; part < PART_COUNT; ++part) { channel->ch_part[part].ch_fd = INVALID_FD; #ifdef FEAT_GUI_X11 channel->ch_part[part].ch_inputHandler = (XtInputId)NULL; #endif #ifdef FEAT_GUI_GTK channel->ch_part[part].ch_inputHandler = 0; #endif channel->ch_part[part].ch_timeout = 2000; } if (first_channel != NULL) { first_channel->ch_prev = channel; channel->ch_next = first_channel; } first_channel = channel; channel->ch_refcount = 1; return channel; } int has_any_channel(void) { return first_channel != NULL; } /* * Called when the refcount of a channel is zero. * Return TRUE if "channel" has a callback and the associated job wasn't * killed. */ static int channel_still_useful(channel_T *channel) { int has_sock_msg; int has_out_msg; int has_err_msg; // If the job was killed the channel is not expected to work anymore. if (channel->ch_job_killed && channel->ch_job == NULL) return FALSE; // If there is a close callback it may still need to be invoked. if (channel->ch_close_cb.cb_name != NULL) return TRUE; // If reading from or a buffer it's still useful. if (channel->ch_part[PART_IN].ch_bufref.br_buf != NULL) return TRUE; // If there is no callback then nobody can get readahead. If the fd is // closed and there is no readahead then the callback won't be called. has_sock_msg = channel->ch_part[PART_SOCK].ch_fd != INVALID_FD || channel->ch_part[PART_SOCK].ch_head.rq_next != NULL || channel->ch_part[PART_SOCK].ch_json_head.jq_next != NULL; has_out_msg = channel->ch_part[PART_OUT].ch_fd != INVALID_FD || channel->ch_part[PART_OUT].ch_head.rq_next != NULL || channel->ch_part[PART_OUT].ch_json_head.jq_next != NULL; has_err_msg = channel->ch_part[PART_ERR].ch_fd != INVALID_FD || channel->ch_part[PART_ERR].ch_head.rq_next != NULL || channel->ch_part[PART_ERR].ch_json_head.jq_next != NULL; return (channel->ch_callback.cb_name != NULL && (has_sock_msg || has_out_msg || has_err_msg)) || ((channel->ch_part[PART_OUT].ch_callback.cb_name != NULL || channel->ch_part[PART_OUT].ch_bufref.br_buf != NULL) && has_out_msg) || ((channel->ch_part[PART_ERR].ch_callback.cb_name != NULL || channel->ch_part[PART_ERR].ch_bufref.br_buf != NULL) && has_err_msg); } /* * Return TRUE if "channel" is closeable (i.e. all readable fds are closed). */ static int channel_can_close(channel_T *channel) { return channel->ch_to_be_closed == 0; } /* * Close a channel and free all its resources. * The "channel" pointer remains valid. */ static void channel_free_contents(channel_T *channel) { channel_close(channel, TRUE); channel_clear(channel); ch_log(channel, "Freeing channel"); } /* * Unlink "channel" from the list of channels and free it. */ static void channel_free_channel(channel_T *channel) { if (channel->ch_next != NULL) channel->ch_next->ch_prev = channel->ch_prev; if (channel->ch_prev == NULL) first_channel = channel->ch_next; else channel->ch_prev->ch_next = channel->ch_next; vim_free(channel); } static void channel_free(channel_T *channel) { if (!in_free_unref_items) { if (safe_to_invoke_callback == 0) channel->ch_to_be_freed = TRUE; else { channel_free_contents(channel); channel_free_channel(channel); } } } /* * Close a channel and free all its resources if there is no further action * possible, there is no callback to be invoked or the associated job was * killed. * Return TRUE if the channel was freed. */ static int channel_may_free(channel_T *channel) { if (!channel_still_useful(channel)) { channel_free(channel); return TRUE; } return FALSE; } /* * Decrement the reference count on "channel" and maybe free it when it goes * down to zero. Don't free it if there is a pending action. * Returns TRUE when the channel is no longer referenced. */ int channel_unref(channel_T *channel) { if (channel != NULL && --channel->ch_refcount <= 0) return channel_may_free(channel); return FALSE; } int free_unused_channels_contents(int copyID, int mask) { int did_free = FALSE; channel_T *ch; // This is invoked from the garbage collector, which only runs at a safe // point. ++safe_to_invoke_callback; FOR_ALL_CHANNELS(ch) if (!channel_still_useful(ch) && (ch->ch_copyID & mask) != (copyID & mask)) { // Free the channel and ordinary items it contains, but don't // recurse into Lists, Dictionaries etc. channel_free_contents(ch); did_free = TRUE; } --safe_to_invoke_callback; return did_free; } void free_unused_channels(int copyID, int mask) { channel_T *ch; channel_T *ch_next; for (ch = first_channel; ch != NULL; ch = ch_next) { ch_next = ch->ch_next; if (!channel_still_useful(ch) && (ch->ch_copyID & mask) != (copyID & mask)) // Free the channel struct itself. channel_free_channel(ch); } } #if defined(FEAT_GUI) || defined(PROTO) # if defined(FEAT_GUI_X11) || defined(FEAT_GUI_GTK) /* * Lookup the channel from the socket. Set "partp" to the fd index. * Returns NULL when the socket isn't found. */ static channel_T * channel_fd2channel(sock_T fd, ch_part_T *partp) { channel_T *channel; ch_part_T part; if (fd != INVALID_FD) FOR_ALL_CHANNELS(channel) { for (part = PART_SOCK; part < PART_IN; ++part) if (channel->ch_part[part].ch_fd == fd) { *partp = part; return channel; } } return NULL; } static void channel_read_fd(int fd) { channel_T *channel; ch_part_T part; channel = channel_fd2channel(fd, &part); if (channel == NULL) ch_error(NULL, "Channel for fd %d not found", fd); else channel_read(channel, part, "channel_read_fd"); } # endif /* * Read a command from netbeans. */ # ifdef FEAT_GUI_X11 static void messageFromServerX11(XtPointer clientData, int *unused1 UNUSED, XtInputId *unused2 UNUSED) { channel_read_fd((int)(long)clientData); } # endif # ifdef FEAT_GUI_GTK # if GTK_CHECK_VERSION(3,0,0) static gboolean messageFromServerGtk3(GIOChannel *unused1 UNUSED, GIOCondition unused2 UNUSED, gpointer clientData) { channel_read_fd(GPOINTER_TO_INT(clientData)); return TRUE; // Return FALSE instead in case the event source is to // be removed after this function returns. } # else static void messageFromServerGtk2(gpointer clientData, gint unused1 UNUSED, GdkInputCondition unused2 UNUSED) { channel_read_fd((int)(long)clientData); } # endif # endif static void channel_gui_register_one(channel_T *channel, ch_part_T part UNUSED) { if (!CH_HAS_GUI) return; // gets stuck in handling events for a not connected channel if (channel->ch_keep_open) return; # ifdef FEAT_GUI_X11 // Tell notifier we are interested in being called when there is input on // the editor connection socket. if (channel->ch_part[part].ch_inputHandler == (XtInputId)NULL) { ch_log(channel, "Registering part %s with fd %d", part_names[part], channel->ch_part[part].ch_fd); channel->ch_part[part].ch_inputHandler = XtAppAddInput( (XtAppContext)app_context, channel->ch_part[part].ch_fd, (XtPointer)(XtInputReadMask + XtInputExceptMask), messageFromServerX11, (XtPointer)(long)channel->ch_part[part].ch_fd); } # else # ifdef FEAT_GUI_GTK // Tell gdk we are interested in being called when there is input on the // editor connection socket. if (channel->ch_part[part].ch_inputHandler == 0) { ch_log(channel, "Registering part %s with fd %d", part_names[part], channel->ch_part[part].ch_fd); # if GTK_CHECK_VERSION(3,0,0) GIOChannel *chnnl = g_io_channel_unix_new( (gint)channel->ch_part[part].ch_fd); channel->ch_part[part].ch_inputHandler = g_io_add_watch( chnnl, G_IO_IN|G_IO_HUP|G_IO_ERR|G_IO_PRI, messageFromServerGtk3, GINT_TO_POINTER(channel->ch_part[part].ch_fd)); g_io_channel_unref(chnnl); # else channel->ch_part[part].ch_inputHandler = gdk_input_add( (gint)channel->ch_part[part].ch_fd, (GdkInputCondition) ((int)GDK_INPUT_READ + (int)GDK_INPUT_EXCEPTION), messageFromServerGtk2, (gpointer)(long)channel->ch_part[part].ch_fd); # endif } # endif # endif } static void channel_gui_register(channel_T *channel) { if (channel->CH_SOCK_FD != INVALID_FD) channel_gui_register_one(channel, PART_SOCK); if (channel->CH_OUT_FD != INVALID_FD && channel->CH_OUT_FD != channel->CH_SOCK_FD) channel_gui_register_one(channel, PART_OUT); if (channel->CH_ERR_FD != INVALID_FD && channel->CH_ERR_FD != channel->CH_SOCK_FD && channel->CH_ERR_FD != channel->CH_OUT_FD) channel_gui_register_one(channel, PART_ERR); } /* * Register any of our file descriptors with the GUI event handling system. * Called when the GUI has started. */ void channel_gui_register_all(void) { channel_T *channel; FOR_ALL_CHANNELS(channel) channel_gui_register(channel); } static void channel_gui_unregister_one(channel_T *channel UNUSED, ch_part_T part UNUSED) { # ifdef FEAT_GUI_X11 if (channel->ch_part[part].ch_inputHandler != (XtInputId)NULL) { ch_log(channel, "Unregistering part %s", part_names[part]); XtRemoveInput(channel->ch_part[part].ch_inputHandler); channel->ch_part[part].ch_inputHandler = (XtInputId)NULL; } # else # ifdef FEAT_GUI_GTK if (channel->ch_part[part].ch_inputHandler != 0) { ch_log(channel, "Unregistering part %s", part_names[part]); # if GTK_CHECK_VERSION(3,0,0) g_source_remove(channel->ch_part[part].ch_inputHandler); # else gdk_input_remove(channel->ch_part[part].ch_inputHandler); # endif channel->ch_part[part].ch_inputHandler = 0; } # endif # endif } static void channel_gui_unregister(channel_T *channel) { ch_part_T part; for (part = PART_SOCK; part < PART_IN; ++part) channel_gui_unregister_one(channel, part); } #endif // FEAT_GUI static char *e_cannot_connect = N_("E902: Cannot connect to port"); /* * For Unix we need to call connect() again after connect() failed. * On Win32 one time is sufficient. */ static int channel_connect( channel_T *channel, const struct sockaddr *server_addr, int server_addrlen, int *waittime) { int sd = -1; #ifdef MSWIN u_long val = 1; #endif while (TRUE) { long elapsed_msec = 0; int waitnow; int ret; if (sd >= 0) sock_close(sd); sd = socket(server_addr->sa_family, SOCK_STREAM, 0); if (sd == -1) { ch_error(channel, "in socket() in channel_connect()."); PERROR(_("E898: socket() in channel_connect()")); return -1; } if (*waittime >= 0) { // Make connect() non-blocking. if ( #ifdef MSWIN ioctlsocket(sd, FIONBIO, &val) < 0 #else fcntl(sd, F_SETFL, O_NONBLOCK) < 0 #endif ) { SOCK_ERRNO; ch_error(channel, "channel_connect: Connect failed with errno %d", errno); sock_close(sd); return -1; } } // Try connecting to the server. ch_log(channel, "Connecting..."); ret = connect(sd, server_addr, server_addrlen); if (ret == 0) // The connection could be established. break; SOCK_ERRNO; if (*waittime < 0 || (errno != EWOULDBLOCK && errno != ECONNREFUSED #ifdef EINPROGRESS && errno != EINPROGRESS #endif )) { ch_error(channel, "channel_connect: Connect failed with errno %d", errno); PERROR(_(e_cannot_connect)); sock_close(sd); return -1; } else if (errno == ECONNREFUSED) { ch_error(channel, "channel_connect: Connection refused"); sock_close(sd); return -1; } // Limit the waittime to 50 msec. If it doesn't work within this // time we close the socket and try creating it again. waitnow = *waittime > 50 ? 50 : *waittime; // If connect() didn't finish then try using select() to wait for the // connection to be made. For Win32 always use select() to wait. { struct timeval tv; fd_set rfds; fd_set wfds; #ifndef MSWIN int so_error = 0; socklen_t so_error_len = sizeof(so_error); struct timeval start_tv; struct timeval end_tv; #endif FD_ZERO(&rfds); FD_SET(sd, &rfds); FD_ZERO(&wfds); FD_SET(sd, &wfds); tv.tv_sec = waitnow / 1000; tv.tv_usec = (waitnow % 1000) * 1000; #ifndef MSWIN gettimeofday(&start_tv, NULL); #endif ch_log(channel, "Waiting for connection (waiting %d msec)...", waitnow); ret = select((int)sd + 1, &rfds, &wfds, NULL, &tv); if (ret < 0) { SOCK_ERRNO; ch_error(channel, "channel_connect: Connect failed with errno %d", errno); PERROR(_(e_cannot_connect)); sock_close(sd); return -1; } #ifdef MSWIN // On Win32: select() is expected to work and wait for up to // "waitnow" msec for the socket to be open. if (FD_ISSET(sd, &wfds)) break; elapsed_msec = waitnow; if (*waittime > 1 && elapsed_msec < *waittime) { *waittime -= elapsed_msec; continue; } #else // On Linux-like systems: See socket(7) for the behavior // After putting the socket in non-blocking mode, connect() will // return EINPROGRESS, select() will not wait (as if writing is // possible), need to use getsockopt() to check if the socket is // actually able to connect. // We detect a failure to connect when either read and write fds // are set. Use getsockopt() to find out what kind of failure. if (FD_ISSET(sd, &rfds) || FD_ISSET(sd, &wfds)) { ret = getsockopt(sd, SOL_SOCKET, SO_ERROR, &so_error, &so_error_len); if (ret < 0 || (so_error != 0 && so_error != EWOULDBLOCK && so_error != ECONNREFUSED # ifdef EINPROGRESS && so_error != EINPROGRESS # endif )) { ch_error(channel, "channel_connect: Connect failed with errno %d", so_error); PERROR(_(e_cannot_connect)); sock_close(sd); return -1; } else if (errno == ECONNREFUSED) { ch_error(channel, "channel_connect: Connection refused"); sock_close(sd); return -1; } } if (FD_ISSET(sd, &wfds) && so_error == 0) // Did not detect an error, connection is established. break; gettimeofday(&end_tv, NULL); elapsed_msec = (end_tv.tv_sec - start_tv.tv_sec) * 1000 + (end_tv.tv_usec - start_tv.tv_usec) / 1000; #endif } #ifndef MSWIN if (*waittime > 1 && elapsed_msec < *waittime) { // The port isn't ready but we also didn't get an error. // This happens when the server didn't open the socket // yet. Select() may return early, wait until the remaining // "waitnow" and try again. waitnow -= elapsed_msec; *waittime -= elapsed_msec; if (waitnow > 0) { mch_delay((long)waitnow, TRUE); ui_breakcheck(); *waittime -= waitnow; } if (!got_int) { if (*waittime <= 0) // give it one more try *waittime = 1; continue; } // we were interrupted, behave as if timed out } #endif // We timed out. ch_error(channel, "Connection timed out"); sock_close(sd); return -1; } if (*waittime >= 0) { #ifdef MSWIN val = 0; ioctlsocket(sd, FIONBIO, &val); #else (void)fcntl(sd, F_SETFL, 0); #endif } return sd; } /* * Open a socket channel to "hostname":"port". * "waittime" is the time in msec to wait for the connection. * When negative wait forever. * Returns the channel for success. * Returns NULL for failure. */ channel_T * channel_open( const char *hostname, int port, int waittime, void (*nb_close_cb)(void)) { int sd = -1; channel_T *channel = NULL; #ifdef FEAT_IPV6 int err; struct addrinfo hints; struct addrinfo *res = NULL; struct addrinfo *addr = NULL; #else struct sockaddr_in server; struct hostent *host = NULL; #endif #ifdef MSWIN channel_init_winsock(); #endif channel = add_channel(); if (channel == NULL) { ch_error(NULL, "Cannot allocate channel."); return NULL; } // Get the server internet address and put into addr structure fill in the // socket address structure and connect to server. #ifdef FEAT_IPV6 CLEAR_FIELD(hints); hints.ai_family = AF_UNSPEC; hints.ai_socktype = SOCK_STREAM; # ifdef AI_ADDRCONFIG hints.ai_flags = AI_ADDRCONFIG; # endif // Set port number manually in order to prevent name resolution services // from being invoked in the environment where AI_NUMERICSERV is not // defined. if ((err = getaddrinfo(hostname, NULL, &hints, &res)) != 0) { ch_error(channel, "in getaddrinfo() in channel_open()"); semsg(_("E901: getaddrinfo() in channel_open(): %s"), gai_strerror(err)); channel_free(channel); return NULL; } for (addr = res; addr != NULL; addr = addr->ai_next) { const char *dst = hostname; # ifdef HAVE_INET_NTOP const void *src = NULL; char buf[NUMBUFLEN]; # endif if (addr->ai_family == AF_INET6) { struct sockaddr_in6 *sai = (struct sockaddr_in6 *)addr->ai_addr; sai->sin6_port = htons(port); # ifdef HAVE_INET_NTOP src = &sai->sin6_addr; # endif } else if (addr->ai_family == AF_INET) { struct sockaddr_in *sai = (struct sockaddr_in *)addr->ai_addr; sai->sin_port = htons(port); # ifdef HAVE_INET_NTOP src = &sai->sin_addr; #endif } # ifdef HAVE_INET_NTOP if (src != NULL) { dst = inet_ntop(addr->ai_family, src, buf, sizeof(buf)); if (dst == NULL) dst = hostname; else if (STRCMP(hostname, dst) != 0) ch_log(channel, "Resolved %s to %s", hostname, dst); } # endif ch_log(channel, "Trying to connect to %s port %d", dst, port); // On Mac and Solaris a zero timeout almost never works. At least wait // one millisecond. Let's do it for all systems, because we don't know // why this is needed. if (waittime == 0) waittime = 1; sd = channel_connect(channel, addr->ai_addr, (int)addr->ai_addrlen, &waittime); if (sd >= 0) break; } freeaddrinfo(res); #else CLEAR_FIELD(server); server.sin_family = AF_INET; server.sin_port = htons(port); if ((host = gethostbyname(hostname)) == NULL) { ch_error(channel, "in gethostbyname() in channel_open()"); PERROR(_("E901: gethostbyname() in channel_open()")); channel_free(channel); return NULL; } { char *p; // When using host->h_addr_list[0] directly ubsan warns for it to not // be aligned. First copy the pointer to avoid that. memcpy(&p, &host->h_addr_list[0], sizeof(p)); memcpy((char *)&server.sin_addr, p, host->h_length); } ch_log(channel, "Trying to connect to %s port %d", hostname, port); // On Mac and Solaris a zero timeout almost never works. At least wait one // millisecond. Let's do it for all systems, because we don't know why // this is needed. if (waittime == 0) waittime = 1; sd = channel_connect(channel, (struct sockaddr *)&server, sizeof(server), &waittime); #endif if (sd < 0) { channel_free(channel); return NULL; } ch_log(channel, "Connection made"); channel->CH_SOCK_FD = (sock_T)sd; channel->ch_nb_close_cb = nb_close_cb; channel->ch_hostname = (char *)vim_strsave((char_u *)hostname); channel->ch_port = port; channel->ch_to_be_closed |= (1U << PART_SOCK); #ifdef FEAT_GUI channel_gui_register_one(channel, PART_SOCK); #endif return channel; } static void free_set_callback(callback_T *cbp, callback_T *callback) { free_callback(cbp); if (callback->cb_name != NULL && *callback->cb_name != NUL) copy_callback(cbp, callback); else cbp->cb_name = NULL; } /* * Prepare buffer "buf" for writing channel output to. */ static void prepare_buffer(buf_T *buf) { buf_T *save_curbuf = curbuf; buf_copy_options(buf, BCO_ENTER); curbuf = buf; #ifdef FEAT_QUICKFIX set_option_value((char_u *)"bt", 0L, (char_u *)"nofile", OPT_LOCAL); set_option_value((char_u *)"bh", 0L, (char_u *)"hide", OPT_LOCAL); #endif if (curbuf->b_ml.ml_mfp == NULL) ml_open(curbuf); curbuf = save_curbuf; } /* * Find a buffer matching "name" or create a new one. * Returns NULL if there is something very wrong (error already reported). */ static buf_T * channel_find_buffer(char_u *name, int err, int msg) { buf_T *buf = NULL; buf_T *save_curbuf = curbuf; if (name != NULL && *name != NUL) { buf = buflist_findname(name); if (buf == NULL) buf = buflist_findname_exp(name); } if (buf == NULL) { buf = buflist_new(name == NULL || *name == NUL ? NULL : name, NULL, (linenr_T)0, BLN_LISTED | BLN_NEW); if (buf == NULL) return NULL; prepare_buffer(buf); curbuf = buf; if (msg) ml_replace(1, (char_u *)(err ? "Reading from channel error..." : "Reading from channel output..."), TRUE); changed_bytes(1, 0); curbuf = save_curbuf; } return buf; } /* * Set various properties from an "opt" argument. */ static void channel_set_options(channel_T *channel, jobopt_T *opt) { ch_part_T part; if (opt->jo_set & JO_MODE) for (part = PART_SOCK; part < PART_COUNT; ++part) channel->ch_part[part].ch_mode = opt->jo_mode; if (opt->jo_set & JO_IN_MODE) channel->ch_part[PART_IN].ch_mode = opt->jo_in_mode; if (opt->jo_set & JO_OUT_MODE) channel->ch_part[PART_OUT].ch_mode = opt->jo_out_mode; if (opt->jo_set & JO_ERR_MODE) channel->ch_part[PART_ERR].ch_mode = opt->jo_err_mode; channel->ch_nonblock = opt->jo_noblock; if (opt->jo_set & JO_TIMEOUT) for (part = PART_SOCK; part < PART_COUNT; ++part) channel->ch_part[part].ch_timeout = opt->jo_timeout; if (opt->jo_set & JO_OUT_TIMEOUT) channel->ch_part[PART_OUT].ch_timeout = opt->jo_out_timeout; if (opt->jo_set & JO_ERR_TIMEOUT) channel->ch_part[PART_ERR].ch_timeout = opt->jo_err_timeout; if (opt->jo_set & JO_BLOCK_WRITE) channel->ch_part[PART_IN].ch_block_write = 1; if (opt->jo_set & JO_CALLBACK) free_set_callback(&channel->ch_callback, &opt->jo_callback); if (opt->jo_set & JO_OUT_CALLBACK) free_set_callback(&channel->ch_part[PART_OUT].ch_callback, &opt->jo_out_cb); if (opt->jo_set & JO_ERR_CALLBACK) free_set_callback(&channel->ch_part[PART_ERR].ch_callback, &opt->jo_err_cb); if (opt->jo_set & JO_CLOSE_CALLBACK) free_set_callback(&channel->ch_close_cb, &opt->jo_close_cb); channel->ch_drop_never = opt->jo_drop_never; if ((opt->jo_set & JO_OUT_IO) && opt->jo_io[PART_OUT] == JIO_BUFFER) { buf_T *buf; // writing output to a buffer. Default mode is NL. if (!(opt->jo_set & JO_OUT_MODE)) channel->ch_part[PART_OUT].ch_mode = MODE_NL; if (opt->jo_set & JO_OUT_BUF) { buf = buflist_findnr(opt->jo_io_buf[PART_OUT]); if (buf == NULL) semsg(_(e_nobufnr), (long)opt->jo_io_buf[PART_OUT]); } else { int msg = TRUE; if (opt->jo_set2 & JO2_OUT_MSG) msg = opt->jo_message[PART_OUT]; buf = channel_find_buffer(opt->jo_io_name[PART_OUT], FALSE, msg); } if (buf != NULL) { if (opt->jo_set & JO_OUT_MODIFIABLE) channel->ch_part[PART_OUT].ch_nomodifiable = !opt->jo_modifiable[PART_OUT]; if (!buf->b_p_ma && !channel->ch_part[PART_OUT].ch_nomodifiable) { emsg(_(e_modifiable)); } else { ch_log(channel, "writing out to buffer '%s'", (char *)buf->b_ffname); set_bufref(&channel->ch_part[PART_OUT].ch_bufref, buf); // if the buffer was deleted or unloaded resurrect it if (buf->b_ml.ml_mfp == NULL) prepare_buffer(buf); } } } if ((opt->jo_set & JO_ERR_IO) && (opt->jo_io[PART_ERR] == JIO_BUFFER || (opt->jo_io[PART_ERR] == JIO_OUT && (opt->jo_set & JO_OUT_IO) && opt->jo_io[PART_OUT] == JIO_BUFFER))) { buf_T *buf; // writing err to a buffer. Default mode is NL. if (!(opt->jo_set & JO_ERR_MODE)) channel->ch_part[PART_ERR].ch_mode = MODE_NL; if (opt->jo_io[PART_ERR] == JIO_OUT) buf = channel->ch_part[PART_OUT].ch_bufref.br_buf; else if (opt->jo_set & JO_ERR_BUF) { buf = buflist_findnr(opt->jo_io_buf[PART_ERR]); if (buf == NULL) semsg(_(e_nobufnr), (long)opt->jo_io_buf[PART_ERR]); } else { int msg = TRUE; if (opt->jo_set2 & JO2_ERR_MSG) msg = opt->jo_message[PART_ERR]; buf = channel_find_buffer(opt->jo_io_name[PART_ERR], TRUE, msg); } if (buf != NULL) { if (opt->jo_set & JO_ERR_MODIFIABLE) channel->ch_part[PART_ERR].ch_nomodifiable = !opt->jo_modifiable[PART_ERR]; if (!buf->b_p_ma && !channel->ch_part[PART_ERR].ch_nomodifiable) { emsg(_(e_modifiable)); } else { ch_log(channel, "writing err to buffer '%s'", (char *)buf->b_ffname); set_bufref(&channel->ch_part[PART_ERR].ch_bufref, buf); // if the buffer was deleted or unloaded resurrect it if (buf->b_ml.ml_mfp == NULL) prepare_buffer(buf); } } } channel->ch_part[PART_OUT].ch_io = opt->jo_io[PART_OUT]; channel->ch_part[PART_ERR].ch_io = opt->jo_io[PART_ERR]; channel->ch_part[PART_IN].ch_io = opt->jo_io[PART_IN]; } /* * Implements ch_open(). */ static channel_T * channel_open_func(typval_T *argvars) { char_u *address; char_u *p; char *rest; int port; int is_ipv6 = FALSE; jobopt_T opt; channel_T *channel = NULL; address = tv_get_string(&argvars[0]); if (argvars[1].v_type != VAR_UNKNOWN && (argvars[1].v_type != VAR_DICT || argvars[1].vval.v_dict == NULL)) { emsg(_(e_invarg)); return NULL; } // parse address if (*address == '[') { // ipv6 address is_ipv6 = TRUE; p = vim_strchr(address + 1, ']'); if (p == NULL || *++p != ':') { semsg(_(e_invarg2), address); return NULL; } } else { p = vim_strchr(address, ':'); if (p == NULL) { semsg(_(e_invarg2), address); return NULL; } } port = strtol((char *)(p + 1), &rest, 10); if (*address == NUL || port <= 0 || port >= 65536 || *rest != NUL) { semsg(_(e_invarg2), address); return NULL; } if (is_ipv6) { // strip '[' and ']' ++address; *(p - 1) = NUL; } else *p = NUL; // parse options clear_job_options(&opt); opt.jo_mode = MODE_JSON; opt.jo_timeout = 2000; if (get_job_options(&argvars[1], &opt, JO_MODE_ALL + JO_CB_ALL + JO_WAITTIME + JO_TIMEOUT_ALL, 0) == FAIL) goto theend; if (opt.jo_timeout < 0) { emsg(_(e_invarg)); goto theend; } channel = channel_open((char *)address, port, opt.jo_waittime, NULL); if (channel != NULL) { opt.jo_set = JO_ALL; channel_set_options(channel, &opt); } theend: free_job_options(&opt); return channel; } static void ch_close_part(channel_T *channel, ch_part_T part) { sock_T *fd = &channel->ch_part[part].ch_fd; if (*fd != INVALID_FD) { if (part == PART_SOCK) sock_close(*fd); else { // When using a pty the same FD is set on multiple parts, only // close it when the last reference is closed. if ((part == PART_IN || channel->CH_IN_FD != *fd) && (part == PART_OUT || channel->CH_OUT_FD != *fd) && (part == PART_ERR || channel->CH_ERR_FD != *fd)) { #ifdef MSWIN if (channel->ch_named_pipe) DisconnectNamedPipe((HANDLE)fd); #endif fd_close(*fd); } } *fd = INVALID_FD; // channel is closed, may want to end the job if it was the last channel->ch_to_be_closed &= ~(1U << part); } } void channel_set_pipes(channel_T *channel, sock_T in, sock_T out, sock_T err) { if (in != INVALID_FD) { ch_close_part(channel, PART_IN); channel->CH_IN_FD = in; # if defined(UNIX) // Do not end the job when all output channels are closed, wait until // the job ended. if (mch_isatty(in)) channel->ch_to_be_closed |= (1U << PART_IN); # endif } if (out != INVALID_FD) { # if defined(FEAT_GUI) channel_gui_unregister_one(channel, PART_OUT); # endif ch_close_part(channel, PART_OUT); channel->CH_OUT_FD = out; channel->ch_to_be_closed |= (1U << PART_OUT); # if defined(FEAT_GUI) channel_gui_register_one(channel, PART_OUT); # endif } if (err != INVALID_FD) { # if defined(FEAT_GUI) channel_gui_unregister_one(channel, PART_ERR); # endif ch_close_part(channel, PART_ERR); channel->CH_ERR_FD = err; channel->ch_to_be_closed |= (1U << PART_ERR); # if defined(FEAT_GUI) channel_gui_register_one(channel, PART_ERR); # endif } } /* * Sets the job the channel is associated with and associated options. * This does not keep a refcount, when the job is freed ch_job is cleared. */ void channel_set_job(channel_T *channel, job_T *job, jobopt_T *options) { channel->ch_job = job; channel_set_options(channel, options); if (job->jv_in_buf != NULL) { chanpart_T *in_part = &channel->ch_part[PART_IN]; set_bufref(&in_part->ch_bufref, job->jv_in_buf); ch_log(channel, "reading from buffer '%s'", (char *)in_part->ch_bufref.br_buf->b_ffname); if (options->jo_set & JO_IN_TOP) { if (options->jo_in_top == 0 && !(options->jo_set & JO_IN_BOT)) { // Special mode: send last-but-one line when appending a line // to the buffer. in_part->ch_bufref.br_buf->b_write_to_channel = TRUE; in_part->ch_buf_append = TRUE; in_part->ch_buf_top = in_part->ch_bufref.br_buf->b_ml.ml_line_count + 1; } else in_part->ch_buf_top = options->jo_in_top; } else in_part->ch_buf_top = 1; if (options->jo_set & JO_IN_BOT) in_part->ch_buf_bot = options->jo_in_bot; else in_part->ch_buf_bot = in_part->ch_bufref.br_buf->b_ml.ml_line_count; } } /* * Set the callback for "channel"/"part" for the response with "id". */ static void channel_set_req_callback( channel_T *channel, ch_part_T part, callback_T *callback, int id) { cbq_T *head = &channel->ch_part[part].ch_cb_head; cbq_T *item = ALLOC_ONE(cbq_T); if (item != NULL) { copy_callback(&item->cq_callback, callback); item->cq_seq_nr = id; item->cq_prev = head->cq_prev; head->cq_prev = item; item->cq_next = NULL; if (item->cq_prev == NULL) head->cq_next = item; else item->cq_prev->cq_next = item; } } static void write_buf_line(buf_T *buf, linenr_T lnum, channel_T *channel) { char_u *line = ml_get_buf(buf, lnum, FALSE); int len = (int)STRLEN(line); char_u *p; int i; // Need to make a copy to be able to append a NL. if ((p = alloc(len + 2)) == NULL) return; memcpy((char *)p, (char *)line, len); if (channel->ch_write_text_mode) p[len] = CAR; else { for (i = 0; i < len; ++i) if (p[i] == NL) p[i] = NUL; p[len] = NL; } p[len + 1] = NUL; channel_send(channel, PART_IN, p, len + 1, "write_buf_line"); vim_free(p); } /* * Return TRUE if "channel" can be written to. * Returns FALSE if the input is closed or the write would block. */ static int can_write_buf_line(channel_T *channel) { chanpart_T *in_part = &channel->ch_part[PART_IN]; if (in_part->ch_fd == INVALID_FD) return FALSE; // pipe was closed // for testing: block every other attempt to write if (in_part->ch_block_write == 1) in_part->ch_block_write = -1; else if (in_part->ch_block_write == -1) in_part->ch_block_write = 1; // TODO: Win32 implementation, probably using WaitForMultipleObjects() #ifndef MSWIN { # if defined(HAVE_SELECT) struct timeval tval; fd_set wfds; int ret; FD_ZERO(&wfds); FD_SET((int)in_part->ch_fd, &wfds); tval.tv_sec = 0; tval.tv_usec = 0; for (;;) { ret = select((int)in_part->ch_fd + 1, NULL, &wfds, NULL, &tval); # ifdef EINTR SOCK_ERRNO; if (ret == -1 && errno == EINTR) continue; # endif if (ret <= 0 || in_part->ch_block_write == 1) { if (ret > 0) ch_log(channel, "FAKED Input not ready for writing"); else ch_log(channel, "Input not ready for writing"); return FALSE; } break; } # else struct pollfd fds; fds.fd = in_part->ch_fd; fds.events = POLLOUT; if (poll(&fds, 1, 0) <= 0) { ch_log(channel, "Input not ready for writing"); return FALSE; } if (in_part->ch_block_write == 1) { ch_log(channel, "FAKED Input not ready for writing"); return FALSE; } # endif } #endif return TRUE; } /* * Write any buffer lines to the input channel. */ static void channel_write_in(channel_T *channel) { chanpart_T *in_part = &channel->ch_part[PART_IN]; linenr_T lnum; buf_T *buf = in_part->ch_bufref.br_buf; int written = 0; if (buf == NULL || in_part->ch_buf_append) return; // no buffer or using appending if (!bufref_valid(&in_part->ch_bufref) || buf->b_ml.ml_mfp == NULL) { // buffer was wiped out or unloaded ch_log(channel, "input buffer has been wiped out"); in_part->ch_bufref.br_buf = NULL; return; } for (lnum = in_part->ch_buf_top; lnum <= in_part->ch_buf_bot && lnum <= buf->b_ml.ml_line_count; ++lnum) { if (!can_write_buf_line(channel)) break; write_buf_line(buf, lnum, channel); ++written; } if (written == 1) ch_log(channel, "written line %d to channel", (int)lnum - 1); else if (written > 1) ch_log(channel, "written %d lines to channel", written); in_part->ch_buf_top = lnum; if (lnum > buf->b_ml.ml_line_count || lnum > in_part->ch_buf_bot) { #if defined(FEAT_TERMINAL) // Send CTRL-D or "eof_chars" to close stdin on MS-Windows. if (channel->ch_job != NULL) term_send_eof(channel); #endif // Writing is done, no longer need the buffer. in_part->ch_bufref.br_buf = NULL; ch_log(channel, "Finished writing all lines to channel"); // Close the pipe/socket, so that the other side gets EOF. ch_close_part(channel, PART_IN); } else ch_log(channel, "Still %ld more lines to write", (long)(buf->b_ml.ml_line_count - lnum + 1)); } /* * Handle buffer "buf" being freed, remove it from any channels. */ void channel_buffer_free(buf_T *buf) { channel_T *channel; ch_part_T part; FOR_ALL_CHANNELS(channel) for (part = PART_SOCK; part < PART_COUNT; ++part) { chanpart_T *ch_part = &channel->ch_part[part]; if (ch_part->ch_bufref.br_buf == buf) { ch_log(channel, "%s buffer has been wiped out", part_names[part]); ch_part->ch_bufref.br_buf = NULL; } } } /* * Write any lines waiting to be written to "channel". */ static void channel_write_input(channel_T *channel) { chanpart_T *in_part = &channel->ch_part[PART_IN]; if (in_part->ch_writeque.wq_next != NULL) channel_send(channel, PART_IN, (char_u *)"", 0, "channel_write_input"); else if (in_part->ch_bufref.br_buf != NULL) { if (in_part->ch_buf_append) channel_write_new_lines(in_part->ch_bufref.br_buf); else channel_write_in(channel); } } /* * Write any lines waiting to be written to a channel. */ void channel_write_any_lines(void) { channel_T *channel; FOR_ALL_CHANNELS(channel) channel_write_input(channel); } /* * Write appended lines above the last one in "buf" to the channel. */ void channel_write_new_lines(buf_T *buf) { channel_T *channel; int found_one = FALSE; // There could be more than one channel for the buffer, loop over all of // them. FOR_ALL_CHANNELS(channel) { chanpart_T *in_part = &channel->ch_part[PART_IN]; linenr_T lnum; int written = 0; if (in_part->ch_bufref.br_buf == buf && in_part->ch_buf_append) { if (in_part->ch_fd == INVALID_FD) continue; // pipe was closed found_one = TRUE; for (lnum = in_part->ch_buf_bot; lnum < buf->b_ml.ml_line_count; ++lnum) { if (!can_write_buf_line(channel)) break; write_buf_line(buf, lnum, channel); ++written; } if (written == 1) ch_log(channel, "written line %d to channel", (int)lnum - 1); else if (written > 1) ch_log(channel, "written %d lines to channel", written); if (lnum < buf->b_ml.ml_line_count) ch_log(channel, "Still %ld more lines to write", (long)(buf->b_ml.ml_line_count - lnum)); in_part->ch_buf_bot = lnum; } } if (!found_one) buf->b_write_to_channel = FALSE; } /* * Invoke the "callback" on channel "channel". * This does not redraw but sets channel_need_redraw; */ static void invoke_callback(channel_T *channel, callback_T *callback, typval_T *argv) { typval_T rettv; if (safe_to_invoke_callback == 0) iemsg("INTERNAL: Invoking callback when it is not safe"); argv[0].v_type = VAR_CHANNEL; argv[0].vval.v_channel = channel; call_callback(callback, -1, &rettv, 2, argv); clear_tv(&rettv); channel_need_redraw = TRUE; } /* * Return the first node from "channel"/"part" without removing it. * Returns NULL if there is nothing. */ readq_T * channel_peek(channel_T *channel, ch_part_T part) { readq_T *head = &channel->ch_part[part].ch_head; return head->rq_next; } /* * Return a pointer to the first NL in "node". * Skips over NUL characters. * Returns NULL if there is no NL. */ char_u * channel_first_nl(readq_T *node) { char_u *buffer = node->rq_buffer; long_u i; for (i = 0; i < node->rq_buflen; ++i) if (buffer[i] == NL) return buffer + i; return NULL; } /* * Return the first buffer from channel "channel"/"part" and remove it. * The caller must free it. * Returns NULL if there is nothing. */ char_u * channel_get(channel_T *channel, ch_part_T part, int *outlen) { readq_T *head = &channel->ch_part[part].ch_head; readq_T *node = head->rq_next; char_u *p; if (node == NULL) return NULL; if (outlen != NULL) *outlen += node->rq_buflen; // dispose of the node but keep the buffer p = node->rq_buffer; head->rq_next = node->rq_next; if (node->rq_next == NULL) head->rq_prev = NULL; else node->rq_next->rq_prev = NULL; vim_free(node); return p; } /* * Returns the whole buffer contents concatenated for "channel"/"part". * Replaces NUL bytes with NL. */ static char_u * channel_get_all(channel_T *channel, ch_part_T part, int *outlen) { readq_T *head = &channel->ch_part[part].ch_head; readq_T *node; long_u len = 0; char_u *res; char_u *p; // Concatenate everything into one buffer. for (node = head->rq_next; node != NULL; node = node->rq_next) len += node->rq_buflen; res = alloc(len + 1); if (res == NULL) return NULL; p = res; for (node = head->rq_next; node != NULL; node = node->rq_next) { mch_memmove(p, node->rq_buffer, node->rq_buflen); p += node->rq_buflen; } *p = NUL; // Free all buffers do { p = channel_get(channel, part, NULL); vim_free(p); } while (p != NULL); if (outlen != NULL) { // Returning the length, keep NUL characters. *outlen += len; return res; } // Turn all NUL into NL, so that the result can be used as a string. p = res; while (p < res + len) { if (*p == NUL) *p = NL; #ifdef MSWIN else if (*p == 0x1b) { // crush the escape sequence OSC 0/1/2: ESC ]0; if (p + 3 < res + len && p[1] == ']' && (p[2] == '0' || p[2] == '1' || p[2] == '2') && p[3] == ';') { // '\a' becomes a NL while (p < res + (len - 1) && *p != '\a') ++p; // BEL is zero width characters, suppress display mistake // ConPTY (after 10.0.18317) requires advance checking if (p[-1] == NUL) p[-1] = 0x07; } } #endif ++p; } return res; } /* * Consume "len" bytes from the head of "node". * Caller must check these bytes are available. */ void channel_consume(channel_T *channel, ch_part_T part, int len) { readq_T *head = &channel->ch_part[part].ch_head; readq_T *node = head->rq_next; char_u *buf = node->rq_buffer; mch_memmove(buf, buf + len, node->rq_buflen - len); node->rq_buflen -= len; node->rq_buffer[node->rq_buflen] = NUL; } /* * Collapses the first and second buffer for "channel"/"part". * Returns FAIL if that is not possible. * When "want_nl" is TRUE collapse more buffers until a NL is found. */ int channel_collapse(channel_T *channel, ch_part_T part, int want_nl) { readq_T *head = &channel->ch_part[part].ch_head; readq_T *node = head->rq_next; readq_T *last_node; readq_T *n; char_u *newbuf; char_u *p; long_u len; if (node == NULL || node->rq_next == NULL) return FAIL; last_node = node->rq_next; len = node->rq_buflen + last_node->rq_buflen; if (want_nl) while (last_node->rq_next != NULL && channel_first_nl(last_node) == NULL) { last_node = last_node->rq_next; len += last_node->rq_buflen; } p = newbuf = alloc(len + 1); if (newbuf == NULL) return FAIL; // out of memory mch_memmove(p, node->rq_buffer, node->rq_buflen); p += node->rq_buflen; vim_free(node->rq_buffer); node->rq_buffer = newbuf; for (n = node; n != last_node; ) { n = n->rq_next; mch_memmove(p, n->rq_buffer, n->rq_buflen); p += n->rq_buflen; vim_free(n->rq_buffer); } *p = NUL; node->rq_buflen = (long_u)(p - newbuf); // dispose of the collapsed nodes and their buffers for (n = node->rq_next; n != last_node; ) { n = n->rq_next; vim_free(n->rq_prev); } node->rq_next = last_node->rq_next; if (last_node->rq_next == NULL) head->rq_prev = node; else last_node->rq_next->rq_prev = node; vim_free(last_node); return OK; } /* * Store "buf[len]" on "channel"/"part". * When "prepend" is TRUE put in front, otherwise append at the end. * Returns OK or FAIL. */ static int channel_save(channel_T *channel, ch_part_T part, char_u *buf, int len, int prepend, char *lead) { readq_T *node; readq_T *head = &channel->ch_part[part].ch_head; char_u *p; int i; node = ALLOC_ONE(readq_T); if (node == NULL) return FAIL; // out of memory // A NUL is added at the end, because netbeans code expects that. // Otherwise a NUL may appear inside the text. node->rq_buffer = alloc(len + 1); if (node->rq_buffer == NULL) { vim_free(node); return FAIL; // out of memory } if (channel->ch_part[part].ch_mode == MODE_NL) { // Drop any CR before a NL. p = node->rq_buffer; for (i = 0; i < len; ++i) if (buf[i] != CAR || i + 1 >= len || buf[i + 1] != NL) *p++ = buf[i]; *p = NUL; node->rq_buflen = (long_u)(p - node->rq_buffer); } else { mch_memmove(node->rq_buffer, buf, len); node->rq_buffer[len] = NUL; node->rq_buflen = (long_u)len; } if (prepend) { // prepend node to the head of the queue node->rq_next = head->rq_next; node->rq_prev = NULL; if (head->rq_next == NULL) head->rq_prev = node; else head->rq_next->rq_prev = node; head->rq_next = node; } else { // append node to the tail of the queue node->rq_next = NULL; node->rq_prev = head->rq_prev; if (head->rq_prev == NULL) head->rq_next = node; else head->rq_prev->rq_next = node; head->rq_prev = node; } if (ch_log_active() && lead != NULL) { ch_log_lead(lead, channel, part); fprintf(log_fd, "'"); vim_ignored = (int)fwrite(buf, len, 1, log_fd); fprintf(log_fd, "'\n"); } return OK; } /* * Try to fill the buffer of "reader". * Returns FALSE when nothing was added. */ static int channel_fill(js_read_T *reader) { channel_T *channel = (channel_T *)reader->js_cookie; ch_part_T part = reader->js_cookie_arg; char_u *next = channel_get(channel, part, NULL); int keeplen; int addlen; char_u *p; if (next == NULL) return FALSE; keeplen = reader->js_end - reader->js_buf; if (keeplen > 0) { // Prepend unused text. addlen = (int)STRLEN(next); p = alloc(keeplen + addlen + 1); if (p == NULL) { vim_free(next); return FALSE; } mch_memmove(p, reader->js_buf, keeplen); mch_memmove(p + keeplen, next, addlen + 1); vim_free(next); next = p; } vim_free(reader->js_buf); reader->js_buf = next; return TRUE; } /* * Use the read buffer of "channel"/"part" and parse a JSON message that is * complete. The messages are added to the queue. * Return TRUE if there is more to read. */ static int channel_parse_json(channel_T *channel, ch_part_T part) { js_read_T reader; typval_T listtv; jsonq_T *item; chanpart_T *chanpart = &channel->ch_part[part]; jsonq_T *head = &chanpart->ch_json_head; int status; int ret; if (channel_peek(channel, part) == NULL) return FALSE; reader.js_buf = channel_get(channel, part, NULL); reader.js_used = 0; reader.js_fill = channel_fill; reader.js_cookie = channel; reader.js_cookie_arg = part; // When a message is incomplete we wait for a short while for more to // arrive. After the delay drop the input, otherwise a truncated string // or list will make us hang. // Do not generate error messages, they will be written in a channel log. ++emsg_silent; status = json_decode(&reader, &listtv, chanpart->ch_mode == MODE_JS ? JSON_JS : 0); --emsg_silent; if (status == OK) { // Only accept the response when it is a list with at least two // items. if (listtv.v_type != VAR_LIST || listtv.vval.v_list->lv_len < 2) { if (listtv.v_type != VAR_LIST) ch_error(channel, "Did not receive a list, discarding"); else ch_error(channel, "Expected list with two items, got %d", listtv.vval.v_list->lv_len); clear_tv(&listtv); } else { item = ALLOC_ONE(jsonq_T); if (item == NULL) clear_tv(&listtv); else { item->jq_no_callback = FALSE; item->jq_value = alloc_tv(); if (item->jq_value == NULL) { vim_free(item); clear_tv(&listtv); } else { *item->jq_value = listtv; item->jq_prev = head->jq_prev; head->jq_prev = item; item->jq_next = NULL; if (item->jq_prev == NULL) head->jq_next = item; else item->jq_prev->jq_next = item; } } } } if (status == OK) chanpart->ch_wait_len = 0; else if (status == MAYBE) { size_t buflen = STRLEN(reader.js_buf); if (chanpart->ch_wait_len < buflen) { // First time encountering incomplete message or after receiving // more (but still incomplete): set a deadline of 100 msec. ch_log(channel, "Incomplete message (%d bytes) - wait 100 msec for more", (int)buflen); reader.js_used = 0; chanpart->ch_wait_len = buflen; #ifdef MSWIN chanpart->ch_deadline = GetTickCount() + 100L; #else gettimeofday(&chanpart->ch_deadline, NULL); chanpart->ch_deadline.tv_usec += 100 * 1000; if (chanpart->ch_deadline.tv_usec > 1000 * 1000) { chanpart->ch_deadline.tv_usec -= 1000 * 1000; ++chanpart->ch_deadline.tv_sec; } #endif } else { int timeout; #ifdef MSWIN timeout = GetTickCount() > chanpart->ch_deadline; #else { struct timeval now_tv; gettimeofday(&now_tv, NULL); timeout = now_tv.tv_sec > chanpart->ch_deadline.tv_sec || (now_tv.tv_sec == chanpart->ch_deadline.tv_sec && now_tv.tv_usec > chanpart->ch_deadline.tv_usec); } #endif if (timeout) { status = FAIL; chanpart->ch_wait_len = 0; ch_log(channel, "timed out"); } else { reader.js_used = 0; ch_log(channel, "still waiting on incomplete message"); } } } if (status == FAIL) { ch_error(channel, "Decoding failed - discarding input"); ret = FALSE; chanpart->ch_wait_len = 0; } else if (reader.js_buf[reader.js_used] != NUL) { // Put the unread part back into the channel. channel_save(channel, part, reader.js_buf + reader.js_used, (int)(reader.js_end - reader.js_buf) - reader.js_used, TRUE, NULL); ret = status == MAYBE ? FALSE: TRUE; } else ret = FALSE; vim_free(reader.js_buf); return ret; } /* * Remove "node" from the queue that it is in. Does not free it. */ static void remove_cb_node(cbq_T *head, cbq_T *node) { if (node->cq_prev == NULL) head->cq_next = node->cq_next; else node->cq_prev->cq_next = node->cq_next; if (node->cq_next == NULL) head->cq_prev = node->cq_prev; else node->cq_next->cq_prev = node->cq_prev; } /* * Remove "node" from the queue that it is in and free it. * Caller should have freed or used node->jq_value. */ static void remove_json_node(jsonq_T *head, jsonq_T *node) { if (node->jq_prev == NULL) head->jq_next = node->jq_next; else node->jq_prev->jq_next = node->jq_next; if (node->jq_next == NULL) head->jq_prev = node->jq_prev; else node->jq_next->jq_prev = node->jq_prev; vim_free(node); } /* * Add "id" to the list of JSON message IDs we are waiting on. */ static void channel_add_block_id(chanpart_T *chanpart, int id) { garray_T *gap = &chanpart->ch_block_ids; if (gap->ga_growsize == 0) ga_init2(gap, (int)sizeof(int), 10); if (ga_grow(gap, 1) == OK) { ((int *)gap->ga_data)[gap->ga_len] = id; ++gap->ga_len; } } /* * Remove "id" from the list of JSON message IDs we are waiting on. */ static void channel_remove_block_id(chanpart_T *chanpart, int id) { garray_T *gap = &chanpart->ch_block_ids; int i; for (i = 0; i < gap->ga_len; ++i) if (((int *)gap->ga_data)[i] == id) { --gap->ga_len; if (i < gap->ga_len) { int *p = ((int *)gap->ga_data) + i; mch_memmove(p, p + 1, (gap->ga_len - i) * sizeof(int)); } return; } siemsg("INTERNAL: channel_remove_block_id: cannot find id %d", id); } /* * Return TRUE if "id" is in the list of JSON message IDs we are waiting on. */ static int channel_has_block_id(chanpart_T *chanpart, int id) { garray_T *gap = &chanpart->ch_block_ids; int i; for (i = 0; i < gap->ga_len; ++i) if (((int *)gap->ga_data)[i] == id) return TRUE; return FALSE; } /* * Get a message from the JSON queue for channel "channel". * When "id" is positive it must match the first number in the list. * When "id" is zero or negative jut get the first message. But not one * in the ch_block_ids list. * When "without_callback" is TRUE also get messages that were pushed back. * Return OK when found and return the value in "rettv". * Return FAIL otherwise. */ static int channel_get_json( channel_T *channel, ch_part_T part, int id, int without_callback, typval_T **rettv) { jsonq_T *head = &channel->ch_part[part].ch_json_head; jsonq_T *item = head->jq_next; while (item != NULL) { list_T *l = item->jq_value->vval.v_list; typval_T *tv; CHECK_LIST_MATERIALIZE(l); tv = &l->lv_first->li_tv; if ((without_callback || !item->jq_no_callback) && ((id > 0 && tv->v_type == VAR_NUMBER && tv->vval.v_number == id) || (id <= 0 && (tv->v_type != VAR_NUMBER || tv->vval.v_number == 0 || !channel_has_block_id( &channel->ch_part[part], tv->vval.v_number))))) { *rettv = item->jq_value; if (tv->v_type == VAR_NUMBER) ch_log(channel, "Getting JSON message %ld", (long)tv->vval.v_number); remove_json_node(head, item); return OK; } item = item->jq_next; } return FAIL; } /* * Put back "rettv" into the JSON queue, there was no callback for it. * Takes over the values in "rettv". */ static void channel_push_json(channel_T *channel, ch_part_T part, typval_T *rettv) { jsonq_T *head = &channel->ch_part[part].ch_json_head; jsonq_T *item = head->jq_next; jsonq_T *newitem; if (head->jq_prev != NULL && head->jq_prev->jq_no_callback) // last item was pushed back, append to the end item = NULL; else while (item != NULL && item->jq_no_callback) // append after the last item that was pushed back item = item->jq_next; newitem = ALLOC_ONE(jsonq_T); if (newitem == NULL) clear_tv(rettv); else { newitem->jq_value = alloc_tv(); if (newitem->jq_value == NULL) { vim_free(newitem); clear_tv(rettv); } else { newitem->jq_no_callback = FALSE; *newitem->jq_value = *rettv; if (item == NULL) { // append to the end newitem->jq_prev = head->jq_prev; head->jq_prev = newitem; newitem->jq_next = NULL; if (newitem->jq_prev == NULL) head->jq_next = newitem; else newitem->jq_prev->jq_next = newitem; } else { // append after "item" newitem->jq_prev = item; newitem->jq_next = item->jq_next; item->jq_next = newitem; if (newitem->jq_next == NULL) head->jq_prev = newitem; else newitem->jq_next->jq_prev = newitem; } } } } #define CH_JSON_MAX_ARGS 4 /* * Execute a command received over "channel"/"part" * "argv[0]" is the command string. * "argv[1]" etc. have further arguments, type is VAR_UNKNOWN if missing. */ static void channel_exe_cmd(channel_T *channel, ch_part_T part, typval_T *argv) { char_u *cmd = argv[0].vval.v_string; char_u *arg; int options = channel->ch_part[part].ch_mode == MODE_JS ? JSON_JS : 0; if (argv[1].v_type != VAR_STRING) { ch_error(channel, "received command with non-string argument"); if (p_verbose > 2) emsg(_("E903: received command with non-string argument")); return; } arg = argv[1].vval.v_string; if (arg == NULL) arg = (char_u *)""; if (STRCMP(cmd, "ex") == 0) { int called_emsg_before = called_emsg; ch_log(channel, "Executing ex command '%s'", (char *)arg); ++emsg_silent; do_cmdline_cmd(arg); --emsg_silent; if (called_emsg > called_emsg_before) ch_log(channel, "Ex command error: '%s'", (char *)get_vim_var_str(VV_ERRMSG)); } else if (STRCMP(cmd, "normal") == 0) { exarg_T ea; ch_log(channel, "Executing normal command '%s'", (char *)arg); CLEAR_FIELD(ea); ea.arg = arg; ea.addr_count = 0; ea.forceit = TRUE; // no mapping ex_normal(&ea); } else if (STRCMP(cmd, "redraw") == 0) { exarg_T ea; ch_log(channel, "redraw"); CLEAR_FIELD(ea); ea.forceit = *arg != NUL; ex_redraw(&ea); showruler(FALSE); setcursor(); out_flush_cursor(TRUE, FALSE); } else if (STRCMP(cmd, "expr") == 0 || STRCMP(cmd, "call") == 0) { int is_call = cmd[0] == 'c'; int id_idx = is_call ? 3 : 2; if (argv[id_idx].v_type != VAR_UNKNOWN && argv[id_idx].v_type != VAR_NUMBER) { ch_error(channel, "last argument for expr/call must be a number"); if (p_verbose > 2) emsg(_("E904: last argument for expr/call must be a number")); } else if (is_call && argv[2].v_type != VAR_LIST) { ch_error(channel, "third argument for call must be a list"); if (p_verbose > 2) emsg(_("E904: third argument for call must be a list")); } else { typval_T *tv = NULL; typval_T res_tv; typval_T err_tv; char_u *json = NULL; // Don't pollute the display with errors. ++emsg_skip; if (!is_call) { ch_log(channel, "Evaluating expression '%s'", (char *)arg); tv = eval_expr(arg, NULL); } else { ch_log(channel, "Calling '%s'", (char *)arg); if (func_call(arg, &argv[2], NULL, NULL, &res_tv) == OK) tv = &res_tv; } if (argv[id_idx].v_type == VAR_NUMBER) { int id = argv[id_idx].vval.v_number; if (tv != NULL) json = json_encode_nr_expr(id, tv, options | JSON_NL); if (tv == NULL || (json != NULL && *json == NUL)) { // If evaluation failed or the result can't be encoded // then return the string "ERROR". vim_free(json); err_tv.v_type = VAR_STRING; err_tv.vval.v_string = (char_u *)"ERROR"; json = json_encode_nr_expr(id, &err_tv, options | JSON_NL); } if (json != NULL) { channel_send(channel, part == PART_SOCK ? PART_SOCK : PART_IN, json, (int)STRLEN(json), (char *)cmd); vim_free(json); } } --emsg_skip; if (tv == &res_tv) clear_tv(tv); else free_tv(tv); } } else if (p_verbose > 2) { ch_error(channel, "Received unknown command: %s", (char *)cmd); semsg(_("E905: received unknown command: %s"), cmd); } } /* * Invoke the callback at "cbhead". * Does not redraw but sets channel_need_redraw. */ static void invoke_one_time_callback( channel_T *channel, cbq_T *cbhead, cbq_T *item, typval_T *argv) { ch_log(channel, "Invoking one-time callback %s", (char *)item->cq_callback.cb_name); // Remove the item from the list first, if the callback // invokes ch_close() the list will be cleared. remove_cb_node(cbhead, item); invoke_callback(channel, &item->cq_callback, argv); free_callback(&item->cq_callback); vim_free(item); } static void append_to_buffer(buf_T *buffer, char_u *msg, channel_T *channel, ch_part_T part) { bufref_T save_curbuf = {NULL, 0, 0}; win_T *save_curwin = NULL; tabpage_T *save_curtab = NULL; linenr_T lnum = buffer->b_ml.ml_line_count; int save_write_to = buffer->b_write_to_channel; chanpart_T *ch_part = &channel->ch_part[part]; int save_p_ma = buffer->b_p_ma; int empty = (buffer->b_ml.ml_flags & ML_EMPTY) ? 1 : 0; if (!buffer->b_p_ma && !ch_part->ch_nomodifiable) { if (!ch_part->ch_nomod_error) { ch_error(channel, "Buffer is not modifiable, cannot append"); ch_part->ch_nomod_error = TRUE; } return; } // If the buffer is also used as input insert above the last // line. Don't write these lines. if (save_write_to) { --lnum; buffer->b_write_to_channel = FALSE; } // Append to the buffer ch_log(channel, "appending line %d to buffer", (int)lnum + 1 - empty); buffer->b_p_ma = TRUE; // Save curbuf/curwin/curtab and make "buffer" the current buffer. switch_to_win_for_buf(buffer, &save_curwin, &save_curtab, &save_curbuf); u_sync(TRUE); // ignore undo failure, undo is not very useful here vim_ignored = u_save(lnum - empty, lnum + 1); if (empty) { // The buffer is empty, replace the first (dummy) line. ml_replace(lnum, msg, TRUE); lnum = 0; } else ml_append(lnum, msg, 0, FALSE); appended_lines_mark(lnum, 1L); // Restore curbuf/curwin/curtab restore_win_for_buf(save_curwin, save_curtab, &save_curbuf); if (ch_part->ch_nomodifiable) buffer->b_p_ma = FALSE; else buffer->b_p_ma = save_p_ma; if (buffer->b_nwindows > 0) { win_T *wp; FOR_ALL_WINDOWS(wp) { if (wp->w_buffer == buffer) { int move_cursor = save_write_to ? wp->w_cursor.lnum == lnum + 1 : (wp->w_cursor.lnum == lnum && wp->w_cursor.col == 0); // If the cursor is at or above the new line, move it one line // down. If the topline is outdated update it now. if (move_cursor || wp->w_topline > buffer->b_ml.ml_line_count) { if (move_cursor) ++wp->w_cursor.lnum; save_curwin = curwin; curwin = wp; curbuf = curwin->w_buffer; scroll_cursor_bot(0, FALSE); curwin = save_curwin; curbuf = curwin->w_buffer; } } } redraw_buf_and_status_later(buffer, VALID); channel_need_redraw = TRUE; } if (save_write_to) { channel_T *ch; // Find channels reading from this buffer and adjust their // next-to-read line number. buffer->b_write_to_channel = TRUE; FOR_ALL_CHANNELS(ch) { chanpart_T *in_part = &ch->ch_part[PART_IN]; if (in_part->ch_bufref.br_buf == buffer) in_part->ch_buf_bot = buffer->b_ml.ml_line_count; } } } static void drop_messages(channel_T *channel, ch_part_T part) { char_u *msg; while ((msg = channel_get(channel, part, NULL)) != NULL) { ch_log(channel, "Dropping message '%s'", (char *)msg); vim_free(msg); } } /* * Invoke a callback for "channel"/"part" if needed. * This does not redraw but sets channel_need_redraw when redraw is needed. * Return TRUE when a message was handled, there might be another one. */ static int may_invoke_callback(channel_T *channel, ch_part_T part) { char_u *msg = NULL; typval_T *listtv = NULL; typval_T argv[CH_JSON_MAX_ARGS]; int seq_nr = -1; chanpart_T *ch_part = &channel->ch_part[part]; ch_mode_T ch_mode = ch_part->ch_mode; cbq_T *cbhead = &ch_part->ch_cb_head; cbq_T *cbitem; callback_T *callback = NULL; buf_T *buffer = NULL; char_u *p; if (channel->ch_nb_close_cb != NULL) // this channel is handled elsewhere (netbeans) return FALSE; // Use a message-specific callback, part callback or channel callback for (cbitem = cbhead->cq_next; cbitem != NULL; cbitem = cbitem->cq_next) if (cbitem->cq_seq_nr == 0) break; if (cbitem != NULL) callback = &cbitem->cq_callback; else if (ch_part->ch_callback.cb_name != NULL) callback = &ch_part->ch_callback; else if (channel->ch_callback.cb_name != NULL) callback = &channel->ch_callback; buffer = ch_part->ch_bufref.br_buf; if (buffer != NULL && (!bufref_valid(&ch_part->ch_bufref) || buffer->b_ml.ml_mfp == NULL)) { // buffer was wiped out or unloaded ch_log(channel, "%s buffer has been wiped out", part_names[part]); ch_part->ch_bufref.br_buf = NULL; buffer = NULL; } if (ch_mode == MODE_JSON || ch_mode == MODE_JS) { listitem_T *item; int argc = 0; // Get any json message in the queue. if (channel_get_json(channel, part, -1, FALSE, &listtv) == FAIL) { // Parse readahead, return when there is still no message. channel_parse_json(channel, part); if (channel_get_json(channel, part, -1, FALSE, &listtv) == FAIL) return FALSE; } for (item = listtv->vval.v_list->lv_first; item != NULL && argc < CH_JSON_MAX_ARGS; item = item->li_next) argv[argc++] = item->li_tv; while (argc < CH_JSON_MAX_ARGS) argv[argc++].v_type = VAR_UNKNOWN; if (argv[0].v_type == VAR_STRING) { // ["cmd", arg] or ["cmd", arg, arg] or ["cmd", arg, arg, arg] channel_exe_cmd(channel, part, argv); free_tv(listtv); return TRUE; } if (argv[0].v_type != VAR_NUMBER) { ch_error(channel, "Dropping message with invalid sequence number type"); free_tv(listtv); return FALSE; } seq_nr = argv[0].vval.v_number; } else if (channel_peek(channel, part) == NULL) { // nothing to read on RAW or NL channel return FALSE; } else { // If there is no callback or buffer drop the message. if (callback == NULL && buffer == NULL) { // If there is a close callback it may use ch_read() to get the // messages. if (channel->ch_close_cb.cb_name == NULL && !channel->ch_drop_never) drop_messages(channel, part); return FALSE; } if (ch_mode == MODE_NL) { char_u *nl = NULL; char_u *buf; readq_T *node; // See if we have a message ending in NL in the first buffer. If // not try to concatenate the first and the second buffer. while (TRUE) { node = channel_peek(channel, part); nl = channel_first_nl(node); if (nl != NULL) break; if (channel_collapse(channel, part, TRUE) == FAIL) { if (ch_part->ch_fd == INVALID_FD && node->rq_buflen > 0) break; return FALSE; // incomplete message } } buf = node->rq_buffer; // Convert NUL to NL, the internal representation. for (p = buf; (nl == NULL || p < nl) && p < buf + node->rq_buflen; ++p) if (*p == NUL) *p = NL; if (nl == NULL) { // get the whole buffer, drop the NL msg = channel_get(channel, part, NULL); } else if (nl + 1 == buf + node->rq_buflen) { // get the whole buffer msg = channel_get(channel, part, NULL); *nl = NUL; } else { // Copy the message into allocated memory (excluding the NL) // and remove it from the buffer (including the NL). msg = vim_strnsave(buf, nl - buf); channel_consume(channel, part, (int)(nl - buf) + 1); } } else { // For a raw channel we don't know where the message ends, just // get everything we have. // Convert NUL to NL, the internal representation. msg = channel_get_all(channel, part, NULL); } if (msg == NULL) return FALSE; // out of memory (and avoids Coverity warning) argv[1].v_type = VAR_STRING; argv[1].vval.v_string = msg; } if (seq_nr > 0) { int done = FALSE; // JSON or JS mode: invoke the one-time callback with the matching nr for (cbitem = cbhead->cq_next; cbitem != NULL; cbitem = cbitem->cq_next) if (cbitem->cq_seq_nr == seq_nr) { invoke_one_time_callback(channel, cbhead, cbitem, argv); done = TRUE; break; } if (!done) { if (channel->ch_drop_never) { // message must be read with ch_read() channel_push_json(channel, part, listtv); listtv = NULL; } else ch_log(channel, "Dropping message %d without callback", seq_nr); } } else if (callback != NULL || buffer != NULL) { if (buffer != NULL) { if (msg == NULL) // JSON or JS mode: re-encode the message. msg = json_encode(listtv, ch_mode); if (msg != NULL) { #ifdef FEAT_TERMINAL if (buffer->b_term != NULL) write_to_term(buffer, msg, channel); else #endif append_to_buffer(buffer, msg, channel, part); } } if (callback != NULL) { if (cbitem != NULL) invoke_one_time_callback(channel, cbhead, cbitem, argv); else { // invoke the channel callback ch_log(channel, "Invoking channel callback %s", (char *)callback->cb_name); invoke_callback(channel, callback, argv); } } } else ch_log(channel, "Dropping message %d", seq_nr); if (listtv != NULL) free_tv(listtv); vim_free(msg); return TRUE; } #if defined(FEAT_NETBEANS_INTG) || defined(PROTO) /* * Return TRUE when channel "channel" is open for writing to. * Also returns FALSE or invalid "channel". */ int channel_can_write_to(channel_T *channel) { return channel != NULL && (channel->CH_SOCK_FD != INVALID_FD || channel->CH_IN_FD != INVALID_FD); } #endif /* * Return TRUE when channel "channel" is open for reading or writing. * Also returns FALSE for invalid "channel". */ int channel_is_open(channel_T *channel) { return channel != NULL && (channel->CH_SOCK_FD != INVALID_FD || channel->CH_IN_FD != INVALID_FD || channel->CH_OUT_FD != INVALID_FD || channel->CH_ERR_FD != INVALID_FD); } /* * Return TRUE if "channel" has JSON or other typeahead. */ static int channel_has_readahead(channel_T *channel, ch_part_T part) { ch_mode_T ch_mode = channel->ch_part[part].ch_mode; if (ch_mode == MODE_JSON || ch_mode == MODE_JS) { jsonq_T *head = &channel->ch_part[part].ch_json_head; if (head->jq_next == NULL) // Parse json from readahead, there might be a complete message to // process. channel_parse_json(channel, part); return head->jq_next != NULL; } return channel_peek(channel, part) != NULL; } /* * Return a string indicating the status of the channel. * If "req_part" is not negative check that part. */ char * channel_status(channel_T *channel, int req_part) { ch_part_T part; int has_readahead = FALSE; if (channel == NULL) return "fail"; if (req_part == PART_OUT) { if (channel->CH_OUT_FD != INVALID_FD) return "open"; if (channel_has_readahead(channel, PART_OUT)) has_readahead = TRUE; } else if (req_part == PART_ERR) { if (channel->CH_ERR_FD != INVALID_FD) return "open"; if (channel_has_readahead(channel, PART_ERR)) has_readahead = TRUE; } else { if (channel_is_open(channel)) return "open"; for (part = PART_SOCK; part < PART_IN; ++part) if (channel_has_readahead(channel, part)) { has_readahead = TRUE; break; } } if (has_readahead) return "buffered"; return "closed"; } static void channel_part_info(channel_T *channel, dict_T *dict, char *name, ch_part_T part) { chanpart_T *chanpart = &channel->ch_part[part]; char namebuf[20]; // longest is "sock_timeout" size_t tail; char *status; char *s = ""; vim_strncpy((char_u *)namebuf, (char_u *)name, 4); STRCAT(namebuf, "_"); tail = STRLEN(namebuf); STRCPY(namebuf + tail, "status"); if (chanpart->ch_fd != INVALID_FD) status = "open"; else if (channel_has_readahead(channel, part)) status = "buffered"; else status = "closed"; dict_add_string(dict, namebuf, (char_u *)status); STRCPY(namebuf + tail, "mode"); switch (chanpart->ch_mode) { case MODE_NL: s = "NL"; break; case MODE_RAW: s = "RAW"; break; case MODE_JSON: s = "JSON"; break; case MODE_JS: s = "JS"; break; } dict_add_string(dict, namebuf, (char_u *)s); STRCPY(namebuf + tail, "io"); if (part == PART_SOCK) s = "socket"; else switch (chanpart->ch_io) { case JIO_NULL: s = "null"; break; case JIO_PIPE: s = "pipe"; break; case JIO_FILE: s = "file"; break; case JIO_BUFFER: s = "buffer"; break; case JIO_OUT: s = "out"; break; } dict_add_string(dict, namebuf, (char_u *)s); STRCPY(namebuf + tail, "timeout"); dict_add_number(dict, namebuf, chanpart->ch_timeout); } static void channel_info(channel_T *channel, dict_T *dict) { dict_add_number(dict, "id", channel->ch_id); dict_add_string(dict, "status", (char_u *)channel_status(channel, -1)); if (channel->ch_hostname != NULL) { dict_add_string(dict, "hostname", (char_u *)channel->ch_hostname); dict_add_number(dict, "port", channel->ch_port); channel_part_info(channel, dict, "sock", PART_SOCK); } else { channel_part_info(channel, dict, "out", PART_OUT); channel_part_info(channel, dict, "err", PART_ERR); channel_part_info(channel, dict, "in", PART_IN); } } /* * Close channel "channel". * Trigger the close callback if "invoke_close_cb" is TRUE. * Does not clear the buffers. */ void channel_close(channel_T *channel, int invoke_close_cb) { ch_log(channel, "Closing channel"); #ifdef FEAT_GUI channel_gui_unregister(channel); #endif ch_close_part(channel, PART_SOCK); ch_close_part(channel, PART_IN); ch_close_part(channel, PART_OUT); ch_close_part(channel, PART_ERR); if (invoke_close_cb) { ch_part_T part; // Invoke callbacks and flush buffers before the close callback. if (channel->ch_close_cb.cb_name != NULL) ch_log(channel, "Invoking callbacks and flushing buffers before closing"); for (part = PART_SOCK; part < PART_IN; ++part) { if (channel->ch_close_cb.cb_name != NULL || channel->ch_part[part].ch_bufref.br_buf != NULL) { // Increment the refcount to avoid the channel being freed // halfway. ++channel->ch_refcount; if (channel->ch_close_cb.cb_name == NULL) ch_log(channel, "flushing %s buffers before closing", part_names[part]); while (may_invoke_callback(channel, part)) ; --channel->ch_refcount; } } if (channel->ch_close_cb.cb_name != NULL) { typval_T argv[1]; typval_T rettv; // Increment the refcount to avoid the channel being freed // halfway. ++channel->ch_refcount; ch_log(channel, "Invoking close callback %s", (char *)channel->ch_close_cb.cb_name); argv[0].v_type = VAR_CHANNEL; argv[0].vval.v_channel = channel; call_callback(&channel->ch_close_cb, -1, &rettv, 1, argv); clear_tv(&rettv); channel_need_redraw = TRUE; // the callback is only called once free_callback(&channel->ch_close_cb); if (channel_need_redraw) { channel_need_redraw = FALSE; redraw_after_callback(TRUE); } if (!channel->ch_drop_never) // any remaining messages are useless now for (part = PART_SOCK; part < PART_IN; ++part) drop_messages(channel, part); --channel->ch_refcount; } } channel->ch_nb_close_cb = NULL; #ifdef FEAT_TERMINAL term_channel_closed(channel); #endif } /* * Close the "in" part channel "channel". */ static void channel_close_in(channel_T *channel) { ch_close_part(channel, PART_IN); } static void remove_from_writeque(writeq_T *wq, writeq_T *entry) { ga_clear(&entry->wq_ga); wq->wq_next = entry->wq_next; if (wq->wq_next == NULL) wq->wq_prev = NULL; else wq->wq_next->wq_prev = NULL; vim_free(entry); } /* * Clear the read buffer on "channel"/"part". */ static void channel_clear_one(channel_T *channel, ch_part_T part) { chanpart_T *ch_part = &channel->ch_part[part]; jsonq_T *json_head = &ch_part->ch_json_head; cbq_T *cb_head = &ch_part->ch_cb_head; while (channel_peek(channel, part) != NULL) vim_free(channel_get(channel, part, NULL)); while (cb_head->cq_next != NULL) { cbq_T *node = cb_head->cq_next; remove_cb_node(cb_head, node); free_callback(&node->cq_callback); vim_free(node); } while (json_head->jq_next != NULL) { free_tv(json_head->jq_next->jq_value); remove_json_node(json_head, json_head->jq_next); } free_callback(&ch_part->ch_callback); ga_clear(&ch_part->ch_block_ids); while (ch_part->ch_writeque.wq_next != NULL) remove_from_writeque(&ch_part->ch_writeque, ch_part->ch_writeque.wq_next); } /* * Clear all the read buffers on "channel". */ void channel_clear(channel_T *channel) { ch_log(channel, "Clearing channel"); VIM_CLEAR(channel->ch_hostname); channel_clear_one(channel, PART_SOCK); channel_clear_one(channel, PART_OUT); channel_clear_one(channel, PART_ERR); channel_clear_one(channel, PART_IN); free_callback(&channel->ch_callback); free_callback(&channel->ch_close_cb); } #if defined(EXITFREE) || defined(PROTO) void channel_free_all(void) { channel_T *channel; ch_log(NULL, "channel_free_all()"); FOR_ALL_CHANNELS(channel) channel_clear(channel); } #endif // Sent when the netbeans channel is found closed when reading. #define DETACH_MSG_RAW "DETACH\n" // Buffer size for reading incoming messages. #define MAXMSGSIZE 4096 #if defined(HAVE_SELECT) /* * Add write fds where we are waiting for writing to be possible. */ static int channel_fill_wfds(int maxfd_arg, fd_set *wfds) { int maxfd = maxfd_arg; channel_T *ch; FOR_ALL_CHANNELS(ch) { chanpart_T *in_part = &ch->ch_part[PART_IN]; if (in_part->ch_fd != INVALID_FD && (in_part->ch_bufref.br_buf != NULL || in_part->ch_writeque.wq_next != NULL)) { FD_SET((int)in_part->ch_fd, wfds); if ((int)in_part->ch_fd >= maxfd) maxfd = (int)in_part->ch_fd + 1; } } return maxfd; } #else /* * Add write fds where we are waiting for writing to be possible. */ static int channel_fill_poll_write(int nfd_in, struct pollfd *fds) { int nfd = nfd_in; channel_T *ch; FOR_ALL_CHANNELS(ch) { chanpart_T *in_part = &ch->ch_part[PART_IN]; if (in_part->ch_fd != INVALID_FD && (in_part->ch_bufref.br_buf != NULL || in_part->ch_writeque.wq_next != NULL)) { in_part->ch_poll_idx = nfd; fds[nfd].fd = in_part->ch_fd; fds[nfd].events = POLLOUT; ++nfd; } else in_part->ch_poll_idx = -1; } return nfd; } #endif typedef enum { CW_READY, CW_NOT_READY, CW_ERROR } channel_wait_result; /* * Check for reading from "fd" with "timeout" msec. * Return CW_READY when there is something to read. * Return CW_NOT_READY when there is nothing to read. * Return CW_ERROR when there is an error. */ static channel_wait_result channel_wait(channel_T *channel, sock_T fd, int timeout) { if (timeout > 0) ch_log(channel, "Waiting for up to %d msec", timeout); # ifdef MSWIN if (fd != channel->CH_SOCK_FD) { DWORD nread; int sleep_time; DWORD deadline = GetTickCount() + timeout; int delay = 1; // reading from a pipe, not a socket while (TRUE) { int r = PeekNamedPipe((HANDLE)fd, NULL, 0, NULL, &nread, NULL); if (r && nread > 0) return CW_READY; if (channel->ch_named_pipe) { DisconnectNamedPipe((HANDLE)fd); ConnectNamedPipe((HANDLE)fd, NULL); } else if (r == 0) return CW_ERROR; // perhaps write some buffer lines channel_write_any_lines(); sleep_time = deadline - GetTickCount(); if (sleep_time <= 0) break; // Wait for a little while. Very short at first, up to 10 msec // after looping a few times. if (sleep_time > delay) sleep_time = delay; Sleep(sleep_time); delay = delay * 2; if (delay > 10) delay = 10; } } else #endif { #if defined(HAVE_SELECT) struct timeval tval; fd_set rfds; fd_set wfds; int ret; int maxfd; tval.tv_sec = timeout / 1000; tval.tv_usec = (timeout % 1000) * 1000; for (;;) { FD_ZERO(&rfds); FD_SET((int)fd, &rfds); // Write lines to a pipe when a pipe can be written to. Need to // set this every time, some buffers may be done. maxfd = (int)fd + 1; FD_ZERO(&wfds); maxfd = channel_fill_wfds(maxfd, &wfds); ret = select(maxfd, &rfds, &wfds, NULL, &tval); # ifdef EINTR SOCK_ERRNO; if (ret == -1 && errno == EINTR) continue; # endif if (ret > 0) { if (FD_ISSET(fd, &rfds)) return CW_READY; channel_write_any_lines(); continue; } break; } #else for (;;) { struct pollfd fds[MAX_OPEN_CHANNELS + 1]; int nfd = 1; fds[0].fd = fd; fds[0].events = POLLIN; nfd = channel_fill_poll_write(nfd, fds); if (poll(fds, nfd, timeout) > 0) { if (fds[0].revents & POLLIN) return CW_READY; channel_write_any_lines(); continue; } break; } #endif } return CW_NOT_READY; } static void ch_close_part_on_error( channel_T *channel, ch_part_T part, int is_err, char *func) { char msg[] = "%s(): Read %s from ch_part[%d], closing"; if (is_err) // Do not call emsg(), most likely the other end just exited. ch_error(channel, msg, func, "error", part); else ch_log(channel, msg, func, "EOF", part); // Queue a "DETACH" netbeans message in the command queue in order to // terminate the netbeans session later. Do not end the session here // directly as we may be running in the context of a call to // netbeans_parse_messages(): // netbeans_parse_messages // -> autocmd triggered while processing the netbeans cmd // -> ui_breakcheck // -> gui event loop or select loop // -> channel_read() // Only send "DETACH" for a netbeans channel. if (channel->ch_nb_close_cb != NULL) channel_save(channel, PART_SOCK, (char_u *)DETACH_MSG_RAW, (int)STRLEN(DETACH_MSG_RAW), FALSE, "PUT "); // When reading is not possible close this part of the channel. Don't // close the channel yet, there may be something to read on another part. // When stdout and stderr use the same FD we get the error only on one of // them, also close the other. if (part == PART_OUT || part == PART_ERR) { ch_part_T other = part == PART_OUT ? PART_ERR : PART_OUT; if (channel->ch_part[part].ch_fd == channel->ch_part[other].ch_fd) ch_close_part(channel, other); } ch_close_part(channel, part); #ifdef FEAT_GUI // Stop listening to GUI events right away. channel_gui_unregister_one(channel, part); #endif } static void channel_close_now(channel_T *channel) { ch_log(channel, "Closing channel because all readable fds are closed"); if (channel->ch_nb_close_cb != NULL) (*channel->ch_nb_close_cb)(); channel_close(channel, TRUE); } /* * Read from channel "channel" for as long as there is something to read. * "part" is PART_SOCK, PART_OUT or PART_ERR. * The data is put in the read queue. No callbacks are invoked here. */ static void channel_read(channel_T *channel, ch_part_T part, char *func) { static char_u *buf = NULL; int len = 0; int readlen = 0; sock_T fd; int use_socket = FALSE; fd = channel->ch_part[part].ch_fd; if (fd == INVALID_FD) { ch_error(channel, "channel_read() called while %s part is closed", part_names[part]); return; } use_socket = fd == channel->CH_SOCK_FD; // Allocate a buffer to read into. if (buf == NULL) { buf = alloc(MAXMSGSIZE); if (buf == NULL) return; // out of memory! } // Keep on reading for as long as there is something to read. // Use select() or poll() to avoid blocking on a message that is exactly // MAXMSGSIZE long. for (;;) { if (channel_wait(channel, fd, 0) != CW_READY) break; if (use_socket) len = sock_read(fd, (char *)buf, MAXMSGSIZE); else len = fd_read(fd, (char *)buf, MAXMSGSIZE); if (len <= 0) break; // error or nothing more to read // Store the read message in the queue. channel_save(channel, part, buf, len, FALSE, "RECV "); readlen += len; if (len < MAXMSGSIZE) break; // did read everything that's available } // Reading a disconnection (readlen == 0), or an error. if (readlen <= 0) { if (!channel->ch_keep_open) ch_close_part_on_error(channel, part, (len < 0), func); } #if defined(CH_HAS_GUI) && defined(FEAT_GUI_GTK) else if (CH_HAS_GUI && gtk_main_level() > 0) // signal the main loop that there is something to read gtk_main_quit(); #endif } /* * Read from RAW or NL "channel"/"part". Blocks until there is something to * read or the timeout expires. * When "raw" is TRUE don't block waiting on a NL. * Does not trigger timers or handle messages. * Returns what was read in allocated memory. * Returns NULL in case of error or timeout. */ static char_u * channel_read_block( channel_T *channel, ch_part_T part, int timeout, int raw, int *outlen) { char_u *buf; char_u *msg; ch_mode_T mode = channel->ch_part[part].ch_mode; sock_T fd = channel->ch_part[part].ch_fd; char_u *nl; readq_T *node; ch_log(channel, "Blocking %s read, timeout: %d msec", mode == MODE_RAW ? "RAW" : "NL", timeout); while (TRUE) { node = channel_peek(channel, part); if (node != NULL) { if (mode == MODE_RAW || (mode == MODE_NL && channel_first_nl(node) != NULL)) // got a complete message break; if (channel_collapse(channel, part, mode == MODE_NL) == OK) continue; // If not blocking or nothing more is coming then return what we // have. if (raw || fd == INVALID_FD) break; } // Wait for up to the channel timeout. if (fd == INVALID_FD) return NULL; if (channel_wait(channel, fd, timeout) != CW_READY) { ch_log(channel, "Timed out"); return NULL; } channel_read(channel, part, "channel_read_block"); } // We have a complete message now. if (mode == MODE_RAW || outlen != NULL) { msg = channel_get_all(channel, part, outlen); } else { char_u *p; buf = node->rq_buffer; nl = channel_first_nl(node); // Convert NUL to NL, the internal representation. for (p = buf; (nl == NULL || p < nl) && p < buf + node->rq_buflen; ++p) if (*p == NUL) *p = NL; if (nl == NULL) { // must be a closed channel with missing NL msg = channel_get(channel, part, NULL); } else if (nl + 1 == buf + node->rq_buflen) { // get the whole buffer msg = channel_get(channel, part, NULL); *nl = NUL; } else { // Copy the message into allocated memory and remove it from the // buffer. msg = vim_strnsave(buf, nl - buf); channel_consume(channel, part, (int)(nl - buf) + 1); } } if (ch_log_active()) ch_log(channel, "Returning %d bytes", (int)STRLEN(msg)); return msg; } static int channel_blocking_wait = 0; /* * Return TRUE if in a blocking wait that might trigger callbacks. */ int channel_in_blocking_wait(void) { return channel_blocking_wait > 0; } /* * Read one JSON message with ID "id" from "channel"/"part" and store the * result in "rettv". * When "id" is -1 accept any message; * Blocks until the message is received or the timeout is reached. * In corner cases this can be called recursively, that is why ch_block_ids is * a list. */ static int channel_read_json_block( channel_T *channel, ch_part_T part, int timeout_arg, int id, typval_T **rettv) { int more; sock_T fd; int timeout; chanpart_T *chanpart = &channel->ch_part[part]; int retval = FAIL; ch_log(channel, "Blocking read JSON for id %d", id); ++channel_blocking_wait; if (id >= 0) channel_add_block_id(chanpart, id); for (;;) { more = channel_parse_json(channel, part); // search for message "id" if (channel_get_json(channel, part, id, TRUE, rettv) == OK) { ch_log(channel, "Received JSON for id %d", id); retval = OK; break; } if (!more) { // Handle any other messages in the queue. If done some more // messages may have arrived. if (channel_parse_messages()) continue; // Wait for up to the timeout. If there was an incomplete message // use the deadline for that. timeout = timeout_arg; if (chanpart->ch_wait_len > 0) { #ifdef MSWIN timeout = chanpart->ch_deadline - GetTickCount() + 1; #else { struct timeval now_tv; gettimeofday(&now_tv, NULL); timeout = (chanpart->ch_deadline.tv_sec - now_tv.tv_sec) * 1000 + (chanpart->ch_deadline.tv_usec - now_tv.tv_usec) / 1000 + 1; } #endif if (timeout < 0) { // Something went wrong, channel_parse_json() didn't // discard message. Cancel waiting. chanpart->ch_wait_len = 0; timeout = timeout_arg; } else if (timeout > timeout_arg) timeout = timeout_arg; } fd = chanpart->ch_fd; if (fd == INVALID_FD || channel_wait(channel, fd, timeout) != CW_READY) { if (timeout == timeout_arg) { if (fd != INVALID_FD) ch_log(channel, "Timed out on id %d", id); break; } } else channel_read(channel, part, "channel_read_json_block"); } } if (id >= 0) channel_remove_block_id(chanpart, id); --channel_blocking_wait; return retval; } /* * Get the channel from the argument. * Returns NULL if the handle is invalid. * When "check_open" is TRUE check that the channel can be used. * When "reading" is TRUE "check_open" considers typeahead useful. * "part" is used to check typeahead, when PART_COUNT use the default part. */ static channel_T * get_channel_arg(typval_T *tv, int check_open, int reading, ch_part_T part) { channel_T *channel = NULL; int has_readahead = FALSE; if (tv->v_type == VAR_JOB) { if (tv->vval.v_job != NULL) channel = tv->vval.v_job->jv_channel; } else if (tv->v_type == VAR_CHANNEL) { channel = tv->vval.v_channel; } else { semsg(_(e_invarg2), tv_get_string(tv)); return NULL; } if (channel != NULL && reading) has_readahead = channel_has_readahead(channel, part != PART_COUNT ? part : channel_part_read(channel)); if (check_open && (channel == NULL || (!channel_is_open(channel) && !(reading && has_readahead)))) { emsg(_("E906: not an open channel")); return NULL; } return channel; } /* * Common for ch_read() and ch_readraw(). */ static void common_channel_read(typval_T *argvars, typval_T *rettv, int raw, int blob) { channel_T *channel; ch_part_T part = PART_COUNT; jobopt_T opt; int mode; int timeout; int id = -1; typval_T *listtv = NULL; // return an empty string by default rettv->v_type = VAR_STRING; rettv->vval.v_string = NULL; clear_job_options(&opt); if (get_job_options(&argvars[1], &opt, JO_TIMEOUT + JO_PART + JO_ID, 0) == FAIL) goto theend; if (opt.jo_set & JO_PART) part = opt.jo_part; channel = get_channel_arg(&argvars[0], TRUE, TRUE, part); if (channel != NULL) { if (part == PART_COUNT) part = channel_part_read(channel); mode = channel_get_mode(channel, part); timeout = channel_get_timeout(channel, part); if (opt.jo_set & JO_TIMEOUT) timeout = opt.jo_timeout; if (blob) { int outlen = 0; char_u *p = channel_read_block(channel, part, timeout, TRUE, &outlen); if (p != NULL) { blob_T *b = blob_alloc(); if (b != NULL) { b->bv_ga.ga_len = outlen; if (ga_grow(&b->bv_ga, outlen) == FAIL) blob_free(b); else { memcpy(b->bv_ga.ga_data, p, outlen); rettv_blob_set(rettv, b); } } vim_free(p); } } else if (raw || mode == MODE_RAW || mode == MODE_NL) rettv->vval.v_string = channel_read_block(channel, part, timeout, raw, NULL); else { if (opt.jo_set & JO_ID) id = opt.jo_id; channel_read_json_block(channel, part, timeout, id, &listtv); if (listtv != NULL) { *rettv = *listtv; vim_free(listtv); } else { rettv->v_type = VAR_SPECIAL; rettv->vval.v_number = VVAL_NONE; } } } theend: free_job_options(&opt); } #if defined(MSWIN) || defined(__HAIKU__) || defined(FEAT_GUI) || defined(PROTO) /* * Check the channels for anything that is ready to be read. * The data is put in the read queue. * if "only_keep_open" is TRUE only check channels where ch_keep_open is set. */ void channel_handle_events(int only_keep_open) { channel_T *channel; ch_part_T part; sock_T fd; FOR_ALL_CHANNELS(channel) { if (only_keep_open && !channel->ch_keep_open) continue; // check the socket and pipes for (part = PART_SOCK; part < PART_IN; ++part) { fd = channel->ch_part[part].ch_fd; if (fd != INVALID_FD) { int r = channel_wait(channel, fd, 0); if (r == CW_READY) channel_read(channel, part, "channel_handle_events"); else if (r == CW_ERROR) ch_close_part_on_error(channel, part, TRUE, "channel_handle_events"); } } # ifdef __HAIKU__ // Workaround for Haiku: Since select/poll cannot detect EOF from tty, // should close fds when the job has finished if 'channel' connects to // the pty. if (channel->ch_job != NULL) { job_T *job = channel->ch_job; if (job->jv_tty_out != NULL && job->jv_status == JOB_FINISHED) for (part = PART_SOCK; part < PART_COUNT; ++part) ch_close_part(channel, part); } # endif } } #endif # if defined(FEAT_GUI) || defined(PROTO) /* * Return TRUE when there is any channel with a keep_open flag. */ int channel_any_keep_open() { channel_T *channel; FOR_ALL_CHANNELS(channel) if (channel->ch_keep_open) return TRUE; return FALSE; } # endif /* * Set "channel"/"part" to non-blocking. * Only works for sockets and pipes. */ void channel_set_nonblock(channel_T *channel, ch_part_T part) { chanpart_T *ch_part = &channel->ch_part[part]; int fd = ch_part->ch_fd; if (fd != INVALID_FD) { #ifdef MSWIN u_long val = 1; ioctlsocket(fd, FIONBIO, &val); #else (void)fcntl(fd, F_SETFL, O_NONBLOCK); #endif ch_part->ch_nonblocking = TRUE; } } /* * Write "buf" (NUL terminated string) to "channel"/"part". * When "fun" is not NULL an error message might be given. * Return FAIL or OK. */ int channel_send( channel_T *channel, ch_part_T part, char_u *buf_arg, int len_arg, char *fun) { int res; sock_T fd; chanpart_T *ch_part = &channel->ch_part[part]; int did_use_queue = FALSE; fd = ch_part->ch_fd; if (fd == INVALID_FD) { if (!channel->ch_error && fun != NULL) { ch_error(channel, "%s(): write while not connected", fun); semsg(_("E630: %s(): write while not connected"), fun); } channel->ch_error = TRUE; return FAIL; } if (channel->ch_nonblock && !ch_part->ch_nonblocking) channel_set_nonblock(channel, part); if (ch_log_active()) { ch_log_lead("SEND ", channel, part); fprintf(log_fd, "'"); vim_ignored = (int)fwrite(buf_arg, len_arg, 1, log_fd); fprintf(log_fd, "'\n"); fflush(log_fd); did_repeated_msg = 0; } for (;;) { writeq_T *wq = &ch_part->ch_writeque; char_u *buf; int len; if (wq->wq_next != NULL) { // first write what was queued buf = wq->wq_next->wq_ga.ga_data; len = wq->wq_next->wq_ga.ga_len; did_use_queue = TRUE; } else { if (len_arg == 0) // nothing to write, called from channel_select_check() return OK; buf = buf_arg; len = len_arg; } if (part == PART_SOCK) res = sock_write(fd, (char *)buf, len); else { res = fd_write(fd, (char *)buf, len); #ifdef MSWIN if (channel->ch_named_pipe && res < 0) { DisconnectNamedPipe((HANDLE)fd); ConnectNamedPipe((HANDLE)fd, NULL); } #endif } if (res < 0 && (errno == EWOULDBLOCK #ifdef EAGAIN || errno == EAGAIN #endif )) res = 0; // nothing got written if (res >= 0 && ch_part->ch_nonblocking) { writeq_T *entry = wq->wq_next; if (did_use_queue) ch_log(channel, "Sent %d bytes now", res); if (res == len) { // Wrote all the buf[len] bytes. if (entry != NULL) { // Remove the entry from the write queue. remove_from_writeque(wq, entry); continue; } if (did_use_queue) ch_log(channel, "Write queue empty"); } else { // Wrote only buf[res] bytes, can't write more now. if (entry != NULL) { if (res > 0) { // Remove the bytes that were written. mch_memmove(entry->wq_ga.ga_data, (char *)entry->wq_ga.ga_data + res, len - res); entry->wq_ga.ga_len -= res; } buf = buf_arg; len = len_arg; } else { buf += res; len -= res; } ch_log(channel, "Adding %d bytes to the write queue", len); // Append the not written bytes of the argument to the write // buffer. Limit entries to 4000 bytes. if (wq->wq_prev != NULL && wq->wq_prev->wq_ga.ga_len + len < 4000) { writeq_T *last = wq->wq_prev; // append to the last entry if (len > 0 && ga_grow(&last->wq_ga, len) == OK) { mch_memmove((char *)last->wq_ga.ga_data + last->wq_ga.ga_len, buf, len); last->wq_ga.ga_len += len; } } else { writeq_T *last = ALLOC_ONE(writeq_T); if (last != NULL) { last->wq_prev = wq->wq_prev; last->wq_next = NULL; if (wq->wq_prev == NULL) wq->wq_next = last; else wq->wq_prev->wq_next = last; wq->wq_prev = last; ga_init2(&last->wq_ga, 1, 1000); if (len > 0 && ga_grow(&last->wq_ga, len) == OK) { mch_memmove(last->wq_ga.ga_data, buf, len); last->wq_ga.ga_len = len; } } } } } else if (res != len) { if (!channel->ch_error && fun != NULL) { ch_error(channel, "%s(): write failed", fun); semsg(_("E631: %s(): write failed"), fun); } channel->ch_error = TRUE; return FAIL; } channel->ch_error = FALSE; return OK; } } /* * Common for "ch_sendexpr()" and "ch_sendraw()". * Returns the channel if the caller should read the response. * Sets "part_read" to the read fd. * Otherwise returns NULL. */ static channel_T * send_common( typval_T *argvars, char_u *text, int len, int id, int eval, jobopt_T *opt, char *fun, ch_part_T *part_read) { channel_T *channel; ch_part_T part_send; clear_job_options(opt); channel = get_channel_arg(&argvars[0], TRUE, FALSE, 0); if (channel == NULL) return NULL; part_send = channel_part_send(channel); *part_read = channel_part_read(channel); if (get_job_options(&argvars[2], opt, JO_CALLBACK + JO_TIMEOUT, 0) == FAIL) return NULL; // Set the callback. An empty callback means no callback and not reading // the response. With "ch_evalexpr()" and "ch_evalraw()" a callback is not // allowed. if (opt->jo_callback.cb_name != NULL && *opt->jo_callback.cb_name != NUL) { if (eval) { semsg(_("E917: Cannot use a callback with %s()"), fun); return NULL; } channel_set_req_callback(channel, *part_read, &opt->jo_callback, id); } if (channel_send(channel, part_send, text, len, fun) == OK && opt->jo_callback.cb_name == NULL) return channel; return NULL; } /* * common for "ch_evalexpr()" and "ch_sendexpr()" */ static void ch_expr_common(typval_T *argvars, typval_T *rettv, int eval) { char_u *text; typval_T *listtv; channel_T *channel; int id; ch_mode_T ch_mode; ch_part_T part_send; ch_part_T part_read; jobopt_T opt; int timeout; // return an empty string by default rettv->v_type = VAR_STRING; rettv->vval.v_string = NULL; channel = get_channel_arg(&argvars[0], TRUE, FALSE, 0); if (channel == NULL) return; part_send = channel_part_send(channel); ch_mode = channel_get_mode(channel, part_send); if (ch_mode == MODE_RAW || ch_mode == MODE_NL) { emsg(_("E912: cannot use ch_evalexpr()/ch_sendexpr() with a raw or nl channel")); return; } id = ++channel->ch_last_msg_id; text = json_encode_nr_expr(id, &argvars[1], (ch_mode == MODE_JS ? JSON_JS : 0) | JSON_NL); if (text == NULL) return; channel = send_common(argvars, text, (int)STRLEN(text), id, eval, &opt, eval ? "ch_evalexpr" : "ch_sendexpr", &part_read); vim_free(text); if (channel != NULL && eval) { if (opt.jo_set & JO_TIMEOUT) timeout = opt.jo_timeout; else timeout = channel_get_timeout(channel, part_read); if (channel_read_json_block(channel, part_read, timeout, id, &listtv) == OK) { list_T *list = listtv->vval.v_list; // Move the item from the list and then change the type to // avoid the value being freed. *rettv = list->lv_u.mat.lv_last->li_tv; list->lv_u.mat.lv_last->li_tv.v_type = VAR_NUMBER; free_tv(listtv); } } free_job_options(&opt); } /* * common for "ch_evalraw()" and "ch_sendraw()" */ static void ch_raw_common(typval_T *argvars, typval_T *rettv, int eval) { char_u buf[NUMBUFLEN]; char_u *text; int len; channel_T *channel; ch_part_T part_read; jobopt_T opt; int timeout; // return an empty string by default rettv->v_type = VAR_STRING; rettv->vval.v_string = NULL; if (argvars[1].v_type == VAR_BLOB) { text = argvars[1].vval.v_blob->bv_ga.ga_data; len = argvars[1].vval.v_blob->bv_ga.ga_len; } else { text = tv_get_string_buf(&argvars[1], buf); len = (int)STRLEN(text); } channel = send_common(argvars, text, len, 0, eval, &opt, eval ? "ch_evalraw" : "ch_sendraw", &part_read); if (channel != NULL && eval) { if (opt.jo_set & JO_TIMEOUT) timeout = opt.jo_timeout; else timeout = channel_get_timeout(channel, part_read); rettv->vval.v_string = channel_read_block(channel, part_read, timeout, TRUE, NULL); } free_job_options(&opt); } #define KEEP_OPEN_TIME 20 // msec #if (defined(UNIX) && !defined(HAVE_SELECT)) || defined(PROTO) /* * Add open channels to the poll struct. * Return the adjusted struct index. * The type of "fds" is hidden to avoid problems with the function proto. */ int channel_poll_setup(int nfd_in, void *fds_in, int *towait) { int nfd = nfd_in; channel_T *channel; struct pollfd *fds = fds_in; ch_part_T part; FOR_ALL_CHANNELS(channel) { for (part = PART_SOCK; part < PART_IN; ++part) { chanpart_T *ch_part = &channel->ch_part[part]; if (ch_part->ch_fd != INVALID_FD) { if (channel->ch_keep_open) { // For unknown reason poll() returns immediately for a // keep-open channel. Instead of adding it to the fds add // a short timeout and check, like polling. if (*towait < 0 || *towait > KEEP_OPEN_TIME) *towait = KEEP_OPEN_TIME; } else { ch_part->ch_poll_idx = nfd; fds[nfd].fd = ch_part->ch_fd; fds[nfd].events = POLLIN; nfd++; } } else channel->ch_part[part].ch_poll_idx = -1; } } nfd = channel_fill_poll_write(nfd, fds); return nfd; } /* * The type of "fds" is hidden to avoid problems with the function proto. */ int channel_poll_check(int ret_in, void *fds_in) { int ret = ret_in; channel_T *channel; struct pollfd *fds = fds_in; ch_part_T part; int idx; chanpart_T *in_part; FOR_ALL_CHANNELS(channel) { for (part = PART_SOCK; part < PART_IN; ++part) { idx = channel->ch_part[part].ch_poll_idx; if (ret > 0 && idx != -1 && (fds[idx].revents & POLLIN)) { channel_read(channel, part, "channel_poll_check"); --ret; } else if (channel->ch_part[part].ch_fd != INVALID_FD && channel->ch_keep_open) { // polling a keep-open channel channel_read(channel, part, "channel_poll_check_keep_open"); } } in_part = &channel->ch_part[PART_IN]; idx = in_part->ch_poll_idx; if (ret > 0 && idx != -1 && (fds[idx].revents & POLLOUT)) { channel_write_input(channel); --ret; } } return ret; } #endif // UNIX && !HAVE_SELECT #if (!defined(MSWIN) && defined(HAVE_SELECT)) || defined(PROTO) /* * The "fd_set" type is hidden to avoid problems with the function proto. */ int channel_select_setup( int maxfd_in, void *rfds_in, void *wfds_in, struct timeval *tv, struct timeval **tvp) { int maxfd = maxfd_in; channel_T *channel; fd_set *rfds = rfds_in; fd_set *wfds = wfds_in; ch_part_T part; FOR_ALL_CHANNELS(channel) { for (part = PART_SOCK; part < PART_IN; ++part) { sock_T fd = channel->ch_part[part].ch_fd; if (fd != INVALID_FD) { if (channel->ch_keep_open) { // For unknown reason select() returns immediately for a // keep-open channel. Instead of adding it to the rfds add // a short timeout and check, like polling. if (*tvp == NULL || tv->tv_sec > 0 || tv->tv_usec > KEEP_OPEN_TIME * 1000) { *tvp = tv; tv->tv_sec = 0; tv->tv_usec = KEEP_OPEN_TIME * 1000; } } else { FD_SET((int)fd, rfds); if (maxfd < (int)fd) maxfd = (int)fd; } } } } maxfd = channel_fill_wfds(maxfd, wfds); return maxfd; } /* * The "fd_set" type is hidden to avoid problems with the function proto. */ int channel_select_check(int ret_in, void *rfds_in, void *wfds_in) { int ret = ret_in; channel_T *channel; fd_set *rfds = rfds_in; fd_set *wfds = wfds_in; ch_part_T part; chanpart_T *in_part; FOR_ALL_CHANNELS(channel) { for (part = PART_SOCK; part < PART_IN; ++part) { sock_T fd = channel->ch_part[part].ch_fd; if (ret > 0 && fd != INVALID_FD && FD_ISSET(fd, rfds)) { channel_read(channel, part, "channel_select_check"); FD_CLR(fd, rfds); --ret; } else if (fd != INVALID_FD && channel->ch_keep_open) { // polling a keep-open channel channel_read(channel, part, "channel_select_check_keep_open"); } } in_part = &channel->ch_part[PART_IN]; if (ret > 0 && in_part->ch_fd != INVALID_FD && FD_ISSET(in_part->ch_fd, wfds)) { // Clear the flag first, ch_fd may change in channel_write_input(). FD_CLR(in_part->ch_fd, wfds); channel_write_input(channel); --ret; } # ifdef __HAIKU__ // Workaround for Haiku: Since select/poll cannot detect EOF from tty, // should close fds when the job has finished if 'channel' connects to // the pty. if (channel->ch_job != NULL) { job_T *job = channel->ch_job; if (job->jv_tty_out != NULL && job->jv_status == JOB_FINISHED) for (part = PART_SOCK; part < PART_COUNT; ++part) ch_close_part(channel, part); } # endif } return ret; } #endif // !MSWIN && HAVE_SELECT /* * Execute queued up commands. * Invoked from the main loop when it's safe to execute received commands, * and during a blocking wait for ch_evalexpr(). * Return TRUE when something was done. */ int channel_parse_messages(void) { channel_T *channel = first_channel; int ret = FALSE; int r; ch_part_T part = PART_SOCK; static int recursive = 0; #ifdef ELAPSED_FUNC elapsed_T start_tv; #endif // The code below may invoke callbacks, which might call us back. // In a recursive call channels will not be closed. ++recursive; ++safe_to_invoke_callback; #ifdef ELAPSED_FUNC ELAPSED_INIT(start_tv); #endif // Only do this message when another message was given, otherwise we get // lots of them. if ((did_repeated_msg & REPEATED_MSG_LOOKING) == 0) { ch_log(NULL, "looking for messages on channels"); // now we should also give the message for SafeState did_repeated_msg = REPEATED_MSG_LOOKING; } while (channel != NULL) { if (recursive == 1) { if (channel_can_close(channel)) { channel->ch_to_be_closed = (1U << PART_COUNT); channel_close_now(channel); // channel may have been freed, start over channel = first_channel; continue; } if (channel->ch_to_be_freed || channel->ch_killing) { channel_free_contents(channel); if (channel->ch_job != NULL) channel->ch_job->jv_channel = NULL; // free the channel and then start over channel_free_channel(channel); channel = first_channel; continue; } if (channel->ch_refcount == 0 && !channel_still_useful(channel)) { // channel is no longer useful, free it channel_free(channel); channel = first_channel; part = PART_SOCK; continue; } } if (channel->ch_part[part].ch_fd != INVALID_FD || channel_has_readahead(channel, part)) { // Increase the refcount, in case the handler causes the channel // to be unreferenced or closed. ++channel->ch_refcount; r = may_invoke_callback(channel, part); if (r == OK) ret = TRUE; if (channel_unref(channel) || (r == OK #ifdef ELAPSED_FUNC // Limit the time we loop here to 100 msec, otherwise // Vim becomes unresponsive when the callback takes // more than a bit of time. && ELAPSED_FUNC(start_tv) < 100L #endif )) { // channel was freed or something was done, start over channel = first_channel; part = PART_SOCK; continue; } } if (part < PART_ERR) ++part; else { channel = channel->ch_next; part = PART_SOCK; } } if (channel_need_redraw) { channel_need_redraw = FALSE; redraw_after_callback(TRUE); } --safe_to_invoke_callback; --recursive; return ret; } /* * Return TRUE if any channel has readahead. That means we should not block on * waiting for input. */ int channel_any_readahead(void) { channel_T *channel = first_channel; ch_part_T part = PART_SOCK; while (channel != NULL) { if (channel_has_readahead(channel, part)) return TRUE; if (part < PART_ERR) ++part; else { channel = channel->ch_next; part = PART_SOCK; } } return FALSE; } /* * Mark references to lists used in channels. */ int set_ref_in_channel(int copyID) { int abort = FALSE; channel_T *channel; typval_T tv; for (channel = first_channel; !abort && channel != NULL; channel = channel->ch_next) if (channel_still_useful(channel)) { tv.v_type = VAR_CHANNEL; tv.vval.v_channel = channel; abort = abort || set_ref_in_item(&tv, copyID, NULL, NULL); } return abort; } /* * Return the "part" to write to for "channel". */ static ch_part_T channel_part_send(channel_T *channel) { if (channel->CH_SOCK_FD == INVALID_FD) return PART_IN; return PART_SOCK; } /* * Return the default "part" to read from for "channel". */ static ch_part_T channel_part_read(channel_T *channel) { if (channel->CH_SOCK_FD == INVALID_FD) return PART_OUT; return PART_SOCK; } /* * Return the mode of "channel"/"part" * If "channel" is invalid returns MODE_JSON. */ static ch_mode_T channel_get_mode(channel_T *channel, ch_part_T part) { if (channel == NULL) return MODE_JSON; return channel->ch_part[part].ch_mode; } /* * Return the timeout of "channel"/"part" */ static int channel_get_timeout(channel_T *channel, ch_part_T part) { return channel->ch_part[part].ch_timeout; } static int handle_mode(typval_T *item, jobopt_T *opt, ch_mode_T *modep, int jo) { char_u *val = tv_get_string(item); opt->jo_set |= jo; if (STRCMP(val, "nl") == 0) *modep = MODE_NL; else if (STRCMP(val, "raw") == 0) *modep = MODE_RAW; else if (STRCMP(val, "js") == 0) *modep = MODE_JS; else if (STRCMP(val, "json") == 0) *modep = MODE_JSON; else { semsg(_(e_invarg2), val); return FAIL; } return OK; } static int handle_io(typval_T *item, ch_part_T part, jobopt_T *opt) { char_u *val = tv_get_string(item); opt->jo_set |= JO_OUT_IO << (part - PART_OUT); if (STRCMP(val, "null") == 0) opt->jo_io[part] = JIO_NULL; else if (STRCMP(val, "pipe") == 0) opt->jo_io[part] = JIO_PIPE; else if (STRCMP(val, "file") == 0) opt->jo_io[part] = JIO_FILE; else if (STRCMP(val, "buffer") == 0) opt->jo_io[part] = JIO_BUFFER; else if (STRCMP(val, "out") == 0 && part == PART_ERR) opt->jo_io[part] = JIO_OUT; else { semsg(_(e_invarg2), val); return FAIL; } return OK; } /* * Clear a jobopt_T before using it. */ void clear_job_options(jobopt_T *opt) { CLEAR_POINTER(opt); } /* * Free any members of a jobopt_T. */ static void free_job_options(jobopt_T *opt) { if (opt->jo_callback.cb_partial != NULL) partial_unref(opt->jo_callback.cb_partial); else if (opt->jo_callback.cb_name != NULL) func_unref(opt->jo_callback.cb_name); if (opt->jo_out_cb.cb_partial != NULL) partial_unref(opt->jo_out_cb.cb_partial); else if (opt->jo_out_cb.cb_name != NULL) func_unref(opt->jo_out_cb.cb_name); if (opt->jo_err_cb.cb_partial != NULL) partial_unref(opt->jo_err_cb.cb_partial); else if (opt->jo_err_cb.cb_name != NULL) func_unref(opt->jo_err_cb.cb_name); if (opt->jo_close_cb.cb_partial != NULL) partial_unref(opt->jo_close_cb.cb_partial); else if (opt->jo_close_cb.cb_name != NULL) func_unref(opt->jo_close_cb.cb_name); if (opt->jo_exit_cb.cb_partial != NULL) partial_unref(opt->jo_exit_cb.cb_partial); else if (opt->jo_exit_cb.cb_name != NULL) func_unref(opt->jo_exit_cb.cb_name); if (opt->jo_env != NULL) dict_unref(opt->jo_env); } /* * Get the PART_ number from the first character of an option name. */ static int part_from_char(int c) { return c == 'i' ? PART_IN : c == 'o' ? PART_OUT: PART_ERR; } /* * Get the option entries from the dict in "tv", parse them and put the result * in "opt". * Only accept JO_ options in "supported" and JO2_ options in "supported2". * If an option value is invalid return FAIL. */ int get_job_options(typval_T *tv, jobopt_T *opt, int supported, int supported2) { typval_T *item; char_u *val; dict_T *dict; int todo; hashitem_T *hi; ch_part_T part; if (tv->v_type == VAR_UNKNOWN) return OK; if (tv->v_type != VAR_DICT) { emsg(_(e_dictreq)); return FAIL; } dict = tv->vval.v_dict; if (dict == NULL) return OK; todo = (int)dict->dv_hashtab.ht_used; for (hi = dict->dv_hashtab.ht_array; todo > 0; ++hi) if (!HASHITEM_EMPTY(hi)) { item = &dict_lookup(hi)->di_tv; if (STRCMP(hi->hi_key, "mode") == 0) { if (!(supported & JO_MODE)) break; if (handle_mode(item, opt, &opt->jo_mode, JO_MODE) == FAIL) return FAIL; } else if (STRCMP(hi->hi_key, "in_mode") == 0) { if (!(supported & JO_IN_MODE)) break; if (handle_mode(item, opt, &opt->jo_in_mode, JO_IN_MODE) == FAIL) return FAIL; } else if (STRCMP(hi->hi_key, "out_mode") == 0) { if (!(supported & JO_OUT_MODE)) break; if (handle_mode(item, opt, &opt->jo_out_mode, JO_OUT_MODE) == FAIL) return FAIL; } else if (STRCMP(hi->hi_key, "err_mode") == 0) { if (!(supported & JO_ERR_MODE)) break; if (handle_mode(item, opt, &opt->jo_err_mode, JO_ERR_MODE) == FAIL) return FAIL; } else if (STRCMP(hi->hi_key, "noblock") == 0) { if (!(supported & JO_MODE)) break; opt->jo_noblock = tv_get_number(item); } else if (STRCMP(hi->hi_key, "in_io") == 0 || STRCMP(hi->hi_key, "out_io") == 0 || STRCMP(hi->hi_key, "err_io") == 0) { if (!(supported & JO_OUT_IO)) break; if (handle_io(item, part_from_char(*hi->hi_key), opt) == FAIL) return FAIL; } else if (STRCMP(hi->hi_key, "in_name") == 0 || STRCMP(hi->hi_key, "out_name") == 0 || STRCMP(hi->hi_key, "err_name") == 0) { part = part_from_char(*hi->hi_key); if (!(supported & JO_OUT_IO)) break; opt->jo_set |= JO_OUT_NAME << (part - PART_OUT); opt->jo_io_name[part] = tv_get_string_buf_chk(item, opt->jo_io_name_buf[part]); } else if (STRCMP(hi->hi_key, "pty") == 0) { if (!(supported & JO_MODE)) break; opt->jo_pty = tv_get_number(item); } else if (STRCMP(hi->hi_key, "in_buf") == 0 || STRCMP(hi->hi_key, "out_buf") == 0 || STRCMP(hi->hi_key, "err_buf") == 0) { part = part_from_char(*hi->hi_key); if (!(supported & JO_OUT_IO)) break; opt->jo_set |= JO_OUT_BUF << (part - PART_OUT); opt->jo_io_buf[part] = tv_get_number(item); if (opt->jo_io_buf[part] <= 0) { semsg(_(e_invargNval), hi->hi_key, tv_get_string(item)); return FAIL; } if (buflist_findnr(opt->jo_io_buf[part]) == NULL) { semsg(_(e_nobufnr), (long)opt->jo_io_buf[part]); return FAIL; } } else if (STRCMP(hi->hi_key, "out_modifiable") == 0 || STRCMP(hi->hi_key, "err_modifiable") == 0) { part = part_from_char(*hi->hi_key); if (!(supported & JO_OUT_IO)) break; opt->jo_set |= JO_OUT_MODIFIABLE << (part - PART_OUT); opt->jo_modifiable[part] = tv_get_number(item); } else if (STRCMP(hi->hi_key, "out_msg") == 0 || STRCMP(hi->hi_key, "err_msg") == 0) { part = part_from_char(*hi->hi_key); if (!(supported & JO_OUT_IO)) break; opt->jo_set2 |= JO2_OUT_MSG << (part - PART_OUT); opt->jo_message[part] = tv_get_number(item); } else if (STRCMP(hi->hi_key, "in_top") == 0 || STRCMP(hi->hi_key, "in_bot") == 0) { linenr_T *lp; if (!(supported & JO_OUT_IO)) break; if (hi->hi_key[3] == 't') { lp = &opt->jo_in_top; opt->jo_set |= JO_IN_TOP; } else { lp = &opt->jo_in_bot; opt->jo_set |= JO_IN_BOT; } *lp = tv_get_number(item); if (*lp < 0) { semsg(_(e_invargNval), hi->hi_key, tv_get_string(item)); return FAIL; } } else if (STRCMP(hi->hi_key, "channel") == 0) { if (!(supported & JO_OUT_IO)) break; opt->jo_set |= JO_CHANNEL; if (item->v_type != VAR_CHANNEL) { semsg(_(e_invargval), "channel"); return FAIL; } opt->jo_channel = item->vval.v_channel; } else if (STRCMP(hi->hi_key, "callback") == 0) { if (!(supported & JO_CALLBACK)) break; opt->jo_set |= JO_CALLBACK; opt->jo_callback = get_callback(item); if (opt->jo_callback.cb_name == NULL) { semsg(_(e_invargval), "callback"); return FAIL; } } else if (STRCMP(hi->hi_key, "out_cb") == 0) { if (!(supported & JO_OUT_CALLBACK)) break; opt->jo_set |= JO_OUT_CALLBACK; opt->jo_out_cb = get_callback(item); if (opt->jo_out_cb.cb_name == NULL) { semsg(_(e_invargval), "out_cb"); return FAIL; } } else if (STRCMP(hi->hi_key, "err_cb") == 0) { if (!(supported & JO_ERR_CALLBACK)) break; opt->jo_set |= JO_ERR_CALLBACK; opt->jo_err_cb = get_callback(item); if (opt->jo_err_cb.cb_name == NULL) { semsg(_(e_invargval), "err_cb"); return FAIL; } } else if (STRCMP(hi->hi_key, "close_cb") == 0) { if (!(supported & JO_CLOSE_CALLBACK)) break; opt->jo_set |= JO_CLOSE_CALLBACK; opt->jo_close_cb = get_callback(item); if (opt->jo_close_cb.cb_name == NULL) { semsg(_(e_invargval), "close_cb"); return FAIL; } } else if (STRCMP(hi->hi_key, "drop") == 0) { int never = FALSE; val = tv_get_string(item); if (STRCMP(val, "never") == 0) never = TRUE; else if (STRCMP(val, "auto") != 0) { semsg(_(e_invargNval), "drop", val); return FAIL; } opt->jo_drop_never = never; } else if (STRCMP(hi->hi_key, "exit_cb") == 0) { if (!(supported & JO_EXIT_CB)) break; opt->jo_set |= JO_EXIT_CB; opt->jo_exit_cb = get_callback(item); if (opt->jo_exit_cb.cb_name == NULL) { semsg(_(e_invargval), "exit_cb"); return FAIL; } } #ifdef FEAT_TERMINAL else if (STRCMP(hi->hi_key, "term_name") == 0) { if (!(supported2 & JO2_TERM_NAME)) break; opt->jo_set2 |= JO2_TERM_NAME; opt->jo_term_name = tv_get_string_buf_chk(item, opt->jo_term_name_buf); if (opt->jo_term_name == NULL) { semsg(_(e_invargval), "term_name"); return FAIL; } } else if (STRCMP(hi->hi_key, "term_finish") == 0) { if (!(supported2 & JO2_TERM_FINISH)) break; val = tv_get_string(item); if (STRCMP(val, "open") != 0 && STRCMP(val, "close") != 0) { semsg(_(e_invargNval), "term_finish", val); return FAIL; } opt->jo_set2 |= JO2_TERM_FINISH; opt->jo_term_finish = *val; } else if (STRCMP(hi->hi_key, "term_opencmd") == 0) { char_u *p; if (!(supported2 & JO2_TERM_OPENCMD)) break; opt->jo_set2 |= JO2_TERM_OPENCMD; p = opt->jo_term_opencmd = tv_get_string_buf_chk(item, opt->jo_term_opencmd_buf); if (p != NULL) { // Must have %d and no other %. p = vim_strchr(p, '%'); if (p != NULL && (p[1] != 'd' || vim_strchr(p + 2, '%') != NULL)) p = NULL; } if (p == NULL) { semsg(_(e_invargval), "term_opencmd"); return FAIL; } } else if (STRCMP(hi->hi_key, "eof_chars") == 0) { if (!(supported2 & JO2_EOF_CHARS)) break; opt->jo_set2 |= JO2_EOF_CHARS; opt->jo_eof_chars = tv_get_string_buf_chk(item, opt->jo_eof_chars_buf); if (opt->jo_eof_chars == NULL) { semsg(_(e_invargval), "eof_chars"); return FAIL; } } else if (STRCMP(hi->hi_key, "term_rows") == 0) { if (!(supported2 & JO2_TERM_ROWS)) break; opt->jo_set2 |= JO2_TERM_ROWS; opt->jo_term_rows = tv_get_number(item); } else if (STRCMP(hi->hi_key, "term_cols") == 0) { if (!(supported2 & JO2_TERM_COLS)) break; opt->jo_set2 |= JO2_TERM_COLS; opt->jo_term_cols = tv_get_number(item); } else if (STRCMP(hi->hi_key, "vertical") == 0) { if (!(supported2 & JO2_VERTICAL)) break; opt->jo_set2 |= JO2_VERTICAL; opt->jo_vertical = tv_get_number(item); } else if (STRCMP(hi->hi_key, "curwin") == 0) { if (!(supported2 & JO2_CURWIN)) break; opt->jo_set2 |= JO2_CURWIN; opt->jo_curwin = tv_get_number(item); } else if (STRCMP(hi->hi_key, "bufnr") == 0) { int nr; if (!(supported2 & JO2_CURWIN)) break; opt->jo_set2 |= JO2_BUFNR; nr = tv_get_number(item); if (nr <= 0) { semsg(_(e_invargNval), hi->hi_key, tv_get_string(item)); return FAIL; } opt->jo_bufnr_buf = buflist_findnr(nr); if (opt->jo_bufnr_buf == NULL) { semsg(_(e_nobufnr), (long)nr); return FAIL; } if (opt->jo_bufnr_buf->b_nwindows == 0 || opt->jo_bufnr_buf->b_term == NULL) { semsg(_(e_invarg2), "bufnr"); return FAIL; } } else if (STRCMP(hi->hi_key, "hidden") == 0) { if (!(supported2 & JO2_HIDDEN)) break; opt->jo_set2 |= JO2_HIDDEN; opt->jo_hidden = tv_get_number(item); } else if (STRCMP(hi->hi_key, "norestore") == 0) { if (!(supported2 & JO2_NORESTORE)) break; opt->jo_set2 |= JO2_NORESTORE; opt->jo_term_norestore = tv_get_number(item); } else if (STRCMP(hi->hi_key, "term_kill") == 0) { if (!(supported2 & JO2_TERM_KILL)) break; opt->jo_set2 |= JO2_TERM_KILL; opt->jo_term_kill = tv_get_string_buf_chk(item, opt->jo_term_kill_buf); if (opt->jo_term_kill == NULL) { semsg(_(e_invargval), "term_kill"); return FAIL; } } else if (STRCMP(hi->hi_key, "tty_type") == 0) { char_u *p; if (!(supported2 & JO2_TTY_TYPE)) break; opt->jo_set2 |= JO2_TTY_TYPE; p = tv_get_string_chk(item); if (p == NULL) { semsg(_(e_invargval), "tty_type"); return FAIL; } // Allow empty string, "winpty", "conpty". if (!(*p == NUL || STRCMP(p, "winpty") == 0 || STRCMP(p, "conpty") == 0)) { semsg(_(e_invargval), "tty_type"); return FAIL; } opt->jo_tty_type = p[0]; } # if defined(FEAT_GUI) || defined(FEAT_TERMGUICOLORS) else if (STRCMP(hi->hi_key, "ansi_colors") == 0) { int n = 0; listitem_T *li; long_u rgb[16]; if (!(supported2 & JO2_ANSI_COLORS)) break; if (item == NULL || item->v_type != VAR_LIST || item->vval.v_list == NULL) { semsg(_(e_invargval), "ansi_colors"); return FAIL; } CHECK_LIST_MATERIALIZE(item->vval.v_list); li = item->vval.v_list->lv_first; for (; li != NULL && n < 16; li = li->li_next, n++) { char_u *color_name; guicolor_T guicolor; int called_emsg_before = called_emsg; color_name = tv_get_string_chk(&li->li_tv); if (color_name == NULL) return FAIL; guicolor = GUI_GET_COLOR(color_name); if (guicolor == INVALCOLOR) { if (called_emsg_before == called_emsg) // may not get the error if the GUI didn't start semsg(_(e_alloc_color), color_name); return FAIL; } rgb[n] = GUI_MCH_GET_RGB(guicolor); } if (n != 16 || li != NULL) { semsg(_(e_invargval), "ansi_colors"); return FAIL; } opt->jo_set2 |= JO2_ANSI_COLORS; memcpy(opt->jo_ansi_colors, rgb, sizeof(rgb)); } # endif else if (STRCMP(hi->hi_key, "term_highlight") == 0) { char_u *p; if (!(supported2 & JO2_TERM_HIGHLIGHT)) break; opt->jo_set2 |= JO2_TERM_HIGHLIGHT; p = tv_get_string_buf_chk(item, opt->jo_term_highlight_buf); if (p == NULL || *p == NUL) { semsg(_(e_invargval), "term_highlight"); return FAIL; } opt->jo_term_highlight = p; } else if (STRCMP(hi->hi_key, "term_api") == 0) { if (!(supported2 & JO2_TERM_API)) break; opt->jo_set2 |= JO2_TERM_API; opt->jo_term_api = tv_get_string_buf_chk(item, opt->jo_term_api_buf); if (opt->jo_term_api == NULL) { semsg(_(e_invargval), "term_api"); return FAIL; } } #endif else if (STRCMP(hi->hi_key, "env") == 0) { if (!(supported2 & JO2_ENV)) break; if (item->v_type != VAR_DICT) { semsg(_(e_invargval), "env"); return FAIL; } opt->jo_set2 |= JO2_ENV; opt->jo_env = item->vval.v_dict; if (opt->jo_env != NULL) ++opt->jo_env->dv_refcount; } else if (STRCMP(hi->hi_key, "cwd") == 0) { if (!(supported2 & JO2_CWD)) break; opt->jo_cwd = tv_get_string_buf_chk(item, opt->jo_cwd_buf); if (opt->jo_cwd == NULL || !mch_isdir(opt->jo_cwd) #ifndef MSWIN // Win32 directories don't have the concept of "executable" || mch_access((char *)opt->jo_cwd, X_OK) != 0 #endif ) { semsg(_(e_invargval), "cwd"); return FAIL; } opt->jo_set2 |= JO2_CWD; } else if (STRCMP(hi->hi_key, "waittime") == 0) { if (!(supported & JO_WAITTIME)) break; opt->jo_set |= JO_WAITTIME; opt->jo_waittime = tv_get_number(item); } else if (STRCMP(hi->hi_key, "timeout") == 0) { if (!(supported & JO_TIMEOUT)) break; opt->jo_set |= JO_TIMEOUT; opt->jo_timeout = tv_get_number(item); } else if (STRCMP(hi->hi_key, "out_timeout") == 0) { if (!(supported & JO_OUT_TIMEOUT)) break; opt->jo_set |= JO_OUT_TIMEOUT; opt->jo_out_timeout = tv_get_number(item); } else if (STRCMP(hi->hi_key, "err_timeout") == 0) { if (!(supported & JO_ERR_TIMEOUT)) break; opt->jo_set |= JO_ERR_TIMEOUT; opt->jo_err_timeout = tv_get_number(item); } else if (STRCMP(hi->hi_key, "part") == 0) { if (!(supported & JO_PART)) break; opt->jo_set |= JO_PART; val = tv_get_string(item); if (STRCMP(val, "err") == 0) opt->jo_part = PART_ERR; else if (STRCMP(val, "out") == 0) opt->jo_part = PART_OUT; else { semsg(_(e_invargNval), "part", val); return FAIL; } } else if (STRCMP(hi->hi_key, "id") == 0) { if (!(supported & JO_ID)) break; opt->jo_set |= JO_ID; opt->jo_id = tv_get_number(item); } else if (STRCMP(hi->hi_key, "stoponexit") == 0) { if (!(supported & JO_STOPONEXIT)) break; opt->jo_set |= JO_STOPONEXIT; opt->jo_stoponexit = tv_get_string_buf_chk(item, opt->jo_stoponexit_buf); if (opt->jo_stoponexit == NULL) { semsg(_(e_invargval), "stoponexit"); return FAIL; } } else if (STRCMP(hi->hi_key, "block_write") == 0) { if (!(supported & JO_BLOCK_WRITE)) break; opt->jo_set |= JO_BLOCK_WRITE; opt->jo_block_write = tv_get_number(item); } else break; --todo; } if (todo > 0) { semsg(_(e_invarg2), hi->hi_key); return FAIL; } return OK; } static job_T *first_job = NULL; static void job_free_contents(job_T *job) { int i; ch_log(job->jv_channel, "Freeing job"); if (job->jv_channel != NULL) { // The link from the channel to the job doesn't count as a reference, // thus don't decrement the refcount of the job. The reference from // the job to the channel does count the reference, decrement it and // NULL the reference. We don't set ch_job_killed, unreferencing the // job doesn't mean it stops running. job->jv_channel->ch_job = NULL; channel_unref(job->jv_channel); } mch_clear_job(job); vim_free(job->jv_tty_in); vim_free(job->jv_tty_out); vim_free(job->jv_stoponexit); #ifdef UNIX vim_free(job->jv_termsig); #endif #ifdef MSWIN vim_free(job->jv_tty_type); #endif free_callback(&job->jv_exit_cb); if (job->jv_argv != NULL) { for (i = 0; job->jv_argv[i] != NULL; i++) vim_free(job->jv_argv[i]); vim_free(job->jv_argv); } } /* * Remove "job" from the list of jobs. */ static void job_unlink(job_T *job) { if (job->jv_next != NULL) job->jv_next->jv_prev = job->jv_prev; if (job->jv_prev == NULL) first_job = job->jv_next; else job->jv_prev->jv_next = job->jv_next; } static void job_free_job(job_T *job) { job_unlink(job); vim_free(job); } static void job_free(job_T *job) { if (!in_free_unref_items) { job_free_contents(job); job_free_job(job); } } static job_T *jobs_to_free = NULL; /* * Put "job" in a list to be freed later, when it's no longer referenced. */ static void job_free_later(job_T *job) { job_unlink(job); job->jv_next = jobs_to_free; jobs_to_free = job; } static void free_jobs_to_free_later(void) { job_T *job; while (jobs_to_free != NULL) { job = jobs_to_free; jobs_to_free = job->jv_next; job_free_contents(job); vim_free(job); } } #if defined(EXITFREE) || defined(PROTO) void job_free_all(void) { while (first_job != NULL) job_free(first_job); free_jobs_to_free_later(); # ifdef FEAT_TERMINAL free_unused_terminals(); # endif } #endif /* * Return TRUE if we need to check if the process of "job" has ended. */ static int job_need_end_check(job_T *job) { return job->jv_status == JOB_STARTED && (job->jv_stoponexit != NULL || job->jv_exit_cb.cb_name != NULL); } /* * Return TRUE if the channel of "job" is still useful. */ static int job_channel_still_useful(job_T *job) { return job->jv_channel != NULL && channel_still_useful(job->jv_channel); } /* * Return TRUE if the channel of "job" is closeable. */ static int job_channel_can_close(job_T *job) { return job->jv_channel != NULL && channel_can_close(job->jv_channel); } /* * Return TRUE if the job should not be freed yet. Do not free the job when * it has not ended yet and there is a "stoponexit" flag, an exit callback * or when the associated channel will do something with the job output. */ static int job_still_useful(job_T *job) { return job_need_end_check(job) || job_channel_still_useful(job); } #if defined(GUI_MAY_FORK) || defined(GUI_MAY_SPAWN) || defined(PROTO) /* * Return TRUE when there is any running job that we care about. */ int job_any_running() { job_T *job; FOR_ALL_JOBS(job) if (job_still_useful(job)) { ch_log(NULL, "GUI not forking because a job is running"); return TRUE; } return FALSE; } #endif #if !defined(USE_ARGV) || defined(PROTO) /* * Escape one argument for an external command. * Returns the escaped string in allocated memory. NULL when out of memory. */ static char_u * win32_escape_arg(char_u *arg) { int slen, dlen; int escaping = 0; int i; char_u *s, *d; char_u *escaped_arg; int has_spaces = FALSE; // First count the number of extra bytes required. slen = (int)STRLEN(arg); dlen = slen; for (s = arg; *s != NUL; MB_PTR_ADV(s)) { if (*s == '"' || *s == '\\') ++dlen; if (*s == ' ' || *s == '\t') has_spaces = TRUE; } if (has_spaces) dlen += 2; if (dlen == slen) return vim_strsave(arg); // Allocate memory for the result and fill it. escaped_arg = alloc(dlen + 1); if (escaped_arg == NULL) return NULL; memset(escaped_arg, 0, dlen+1); d = escaped_arg; if (has_spaces) *d++ = '"'; for (s = arg; *s != NUL;) { switch (*s) { case '"': for (i = 0; i < escaping; i++) *d++ = '\\'; escaping = 0; *d++ = '\\'; *d++ = *s++; break; case '\\': escaping++; *d++ = *s++; break; default: escaping = 0; MB_COPY_CHAR(s, d); break; } } // add terminating quote and finish with a NUL if (has_spaces) { for (i = 0; i < escaping; i++) *d++ = '\\'; *d++ = '"'; } *d = NUL; return escaped_arg; } /* * Build a command line from a list, taking care of escaping. * The result is put in gap->ga_data. * Returns FAIL when out of memory. */ int win32_build_cmd(list_T *l, garray_T *gap) { listitem_T *li; char_u *s; CHECK_LIST_MATERIALIZE(l); FOR_ALL_LIST_ITEMS(l, li) { s = tv_get_string_chk(&li->li_tv); if (s == NULL) return FAIL; s = win32_escape_arg(s); if (s == NULL) return FAIL; ga_concat(gap, s); vim_free(s); if (li->li_next != NULL) ga_append(gap, ' '); } return OK; } #endif /* * NOTE: Must call job_cleanup() only once right after the status of "job" * changed to JOB_ENDED (i.e. after job_status() returned "dead" first or * mch_detect_ended_job() returned non-NULL). * If the job is no longer used it will be removed from the list of jobs, and * deleted a bit later. */ void job_cleanup(job_T *job) { if (job->jv_status != JOB_ENDED) return; // Ready to cleanup the job. job->jv_status = JOB_FINISHED; // When only channel-in is kept open, close explicitly. if (job->jv_channel != NULL) ch_close_part(job->jv_channel, PART_IN); if (job->jv_exit_cb.cb_name != NULL) { typval_T argv[3]; typval_T rettv; // Invoke the exit callback. Make sure the refcount is > 0. ch_log(job->jv_channel, "Invoking exit callback %s", job->jv_exit_cb.cb_name); ++job->jv_refcount; argv[0].v_type = VAR_JOB; argv[0].vval.v_job = job; argv[1].v_type = VAR_NUMBER; argv[1].vval.v_number = job->jv_exitval; call_callback(&job->jv_exit_cb, -1, &rettv, 2, argv); clear_tv(&rettv); --job->jv_refcount; channel_need_redraw = TRUE; } if (job->jv_channel != NULL && job->jv_channel->ch_anonymous_pipe) job->jv_channel->ch_killing = TRUE; // Do not free the job in case the close callback of the associated channel // isn't invoked yet and may get information by job_info(). if (job->jv_refcount == 0 && !job_channel_still_useful(job)) // The job was already unreferenced and the associated channel was // detached, now that it ended it can be freed. However, a caller might // still use it, thus free it a bit later. job_free_later(job); } /* * Mark references in jobs that are still useful. */ int set_ref_in_job(int copyID) { int abort = FALSE; job_T *job; typval_T tv; for (job = first_job; !abort && job != NULL; job = job->jv_next) if (job_still_useful(job)) { tv.v_type = VAR_JOB; tv.vval.v_job = job; abort = abort || set_ref_in_item(&tv, copyID, NULL, NULL); } return abort; } /* * Dereference "job". Note that after this "job" may have been freed. */ void job_unref(job_T *job) { if (job != NULL && --job->jv_refcount <= 0) { // Do not free the job if there is a channel where the close callback // may get the job info. if (!job_channel_still_useful(job)) { // Do not free the job when it has not ended yet and there is a // "stoponexit" flag or an exit callback. if (!job_need_end_check(job)) { job_free(job); } else if (job->jv_channel != NULL) { // Do remove the link to the channel, otherwise it hangs // around until Vim exits. See job_free() for refcount. ch_log(job->jv_channel, "detaching channel from job"); job->jv_channel->ch_job = NULL; channel_unref(job->jv_channel); job->jv_channel = NULL; } } } } int free_unused_jobs_contents(int copyID, int mask) { int did_free = FALSE; job_T *job; FOR_ALL_JOBS(job) if ((job->jv_copyID & mask) != (copyID & mask) && !job_still_useful(job)) { // Free the channel and ordinary items it contains, but don't // recurse into Lists, Dictionaries etc. job_free_contents(job); did_free = TRUE; } return did_free; } void free_unused_jobs(int copyID, int mask) { job_T *job; job_T *job_next; for (job = first_job; job != NULL; job = job_next) { job_next = job->jv_next; if ((job->jv_copyID & mask) != (copyID & mask) && !job_still_useful(job)) { // Free the job struct itself. job_free_job(job); } } } /* * Allocate a job. Sets the refcount to one and sets options default. */ job_T * job_alloc(void) { job_T *job; job = ALLOC_CLEAR_ONE(job_T); if (job != NULL) { job->jv_refcount = 1; job->jv_stoponexit = vim_strsave((char_u *)"term"); if (first_job != NULL) { first_job->jv_prev = job; job->jv_next = first_job; } first_job = job; } return job; } void job_set_options(job_T *job, jobopt_T *opt) { if (opt->jo_set & JO_STOPONEXIT) { vim_free(job->jv_stoponexit); if (opt->jo_stoponexit == NULL || *opt->jo_stoponexit == NUL) job->jv_stoponexit = NULL; else job->jv_stoponexit = vim_strsave(opt->jo_stoponexit); } if (opt->jo_set & JO_EXIT_CB) { free_callback(&job->jv_exit_cb); if (opt->jo_exit_cb.cb_name == NULL || *opt->jo_exit_cb.cb_name == NUL) { job->jv_exit_cb.cb_name = NULL; job->jv_exit_cb.cb_partial = NULL; } else copy_callback(&job->jv_exit_cb, &opt->jo_exit_cb); } } /* * Called when Vim is exiting: kill all jobs that have the "stoponexit" flag. */ void job_stop_on_exit(void) { job_T *job; FOR_ALL_JOBS(job) if (job->jv_status == JOB_STARTED && job->jv_stoponexit != NULL) mch_signal_job(job, job->jv_stoponexit); } /* * Return TRUE when there is any job that has an exit callback and might exit, * which means job_check_ended() should be called more often. */ int has_pending_job(void) { job_T *job; FOR_ALL_JOBS(job) // Only should check if the channel has been closed, if the channel is // open the job won't exit. if ((job->jv_status == JOB_STARTED && !job_channel_still_useful(job)) || (job->jv_status == JOB_FINISHED && job_channel_can_close(job))) return TRUE; return FALSE; } #define MAX_CHECK_ENDED 8 /* * Called once in a while: check if any jobs that seem useful have ended. * Returns TRUE if a job did end. */ int job_check_ended(void) { int i; int did_end = FALSE; // be quick if there are no jobs to check if (first_job == NULL) return did_end; for (i = 0; i < MAX_CHECK_ENDED; ++i) { // NOTE: mch_detect_ended_job() must only return a job of which the // status was just set to JOB_ENDED. job_T *job = mch_detect_ended_job(first_job); if (job == NULL) break; did_end = TRUE; job_cleanup(job); // may add "job" to jobs_to_free } // Actually free jobs that were cleaned up. free_jobs_to_free_later(); if (channel_need_redraw) { channel_need_redraw = FALSE; redraw_after_callback(TRUE); } return did_end; } /* * Create a job and return it. Implements job_start(). * "argv_arg" is only for Unix. * When "argv_arg" is NULL then "argvars" is used. * The returned job has a refcount of one. * Returns NULL when out of memory. */ job_T * job_start( typval_T *argvars, char **argv_arg UNUSED, jobopt_T *opt_arg, job_T **term_job) { job_T *job; char_u *cmd = NULL; char **argv = NULL; int argc = 0; int i; #if defined(UNIX) # define USE_ARGV #else garray_T ga; #endif jobopt_T opt; ch_part_T part; job = job_alloc(); if (job == NULL) return NULL; job->jv_status = JOB_FAILED; #ifndef USE_ARGV ga_init2(&ga, (int)sizeof(char*), 20); #endif if (opt_arg != NULL) opt = *opt_arg; else { // Default mode is NL. clear_job_options(&opt); opt.jo_mode = MODE_NL; if (get_job_options(&argvars[1], &opt, JO_MODE_ALL + JO_CB_ALL + JO_TIMEOUT_ALL + JO_STOPONEXIT + JO_EXIT_CB + JO_OUT_IO + JO_BLOCK_WRITE, JO2_ENV + JO2_CWD) == FAIL) goto theend; } // Check that when io is "file" that there is a file name. for (part = PART_OUT; part < PART_COUNT; ++part) if ((opt.jo_set & (JO_OUT_IO << (part - PART_OUT))) && opt.jo_io[part] == JIO_FILE && (!(opt.jo_set & (JO_OUT_NAME << (part - PART_OUT))) || *opt.jo_io_name[part] == NUL)) { emsg(_("E920: _io file requires _name to be set")); goto theend; } if ((opt.jo_set & JO_IN_IO) && opt.jo_io[PART_IN] == JIO_BUFFER) { buf_T *buf = NULL; // check that we can find the buffer before starting the job if (opt.jo_set & JO_IN_BUF) { buf = buflist_findnr(opt.jo_io_buf[PART_IN]); if (buf == NULL) semsg(_(e_nobufnr), (long)opt.jo_io_buf[PART_IN]); } else if (!(opt.jo_set & JO_IN_NAME)) { emsg(_("E915: in_io buffer requires in_buf or in_name to be set")); } else buf = buflist_find_by_name(opt.jo_io_name[PART_IN], FALSE); if (buf == NULL) goto theend; if (buf->b_ml.ml_mfp == NULL) { char_u numbuf[NUMBUFLEN]; char_u *s; if (opt.jo_set & JO_IN_BUF) { sprintf((char *)numbuf, "%d", opt.jo_io_buf[PART_IN]); s = numbuf; } else s = opt.jo_io_name[PART_IN]; semsg(_("E918: buffer must be loaded: %s"), s); goto theend; } job->jv_in_buf = buf; } job_set_options(job, &opt); #ifdef USE_ARGV if (argv_arg != NULL) { // Make a copy of argv_arg for job->jv_argv. for (i = 0; argv_arg[i] != NULL; i++) argc++; argv = ALLOC_MULT(char *, argc + 1); if (argv == NULL) goto theend; for (i = 0; i < argc; i++) argv[i] = (char *)vim_strsave((char_u *)argv_arg[i]); argv[argc] = NULL; } else #endif if (argvars[0].v_type == VAR_STRING) { // Command is a string. cmd = argvars[0].vval.v_string; if (cmd == NULL || *skipwhite(cmd) == NUL) { emsg(_(e_invarg)); goto theend; } if (build_argv_from_string(cmd, &argv, &argc) == FAIL) goto theend; } else if (argvars[0].v_type != VAR_LIST || argvars[0].vval.v_list == NULL || argvars[0].vval.v_list->lv_len < 1) { emsg(_(e_invarg)); goto theend; } else { list_T *l = argvars[0].vval.v_list; if (build_argv_from_list(l, &argv, &argc) == FAIL) goto theend; // Empty command is invalid. if (argc == 0 || *skipwhite((char_u *)argv[0]) == NUL) { emsg(_(e_invarg)); goto theend; } #ifndef USE_ARGV if (win32_build_cmd(l, &ga) == FAIL) goto theend; cmd = ga.ga_data; if (cmd == NULL || *skipwhite(cmd) == NUL) { emsg(_(e_invarg)); goto theend; } #endif } // Save the command used to start the job. job->jv_argv = argv; if (term_job != NULL) *term_job = job; #ifdef USE_ARGV if (ch_log_active()) { garray_T ga; ga_init2(&ga, (int)sizeof(char), 200); for (i = 0; i < argc; ++i) { if (i > 0) ga_concat(&ga, (char_u *)" "); ga_concat(&ga, (char_u *)argv[i]); } ga_append(&ga, NUL); ch_log(NULL, "Starting job: %s", (char *)ga.ga_data); ga_clear(&ga); } mch_job_start(argv, job, &opt, term_job != NULL); #else ch_log(NULL, "Starting job: %s", (char *)cmd); mch_job_start((char *)cmd, job, &opt); #endif // If the channel is reading from a buffer, write lines now. if (job->jv_channel != NULL) channel_write_in(job->jv_channel); theend: #ifndef USE_ARGV vim_free(ga.ga_data); #endif if (argv != NULL && argv != job->jv_argv) { for (i = 0; argv[i] != NULL; i++) vim_free(argv[i]); vim_free(argv); } free_job_options(&opt); return job; } /* * Get the status of "job" and invoke the exit callback when needed. * The returned string is not allocated. */ char * job_status(job_T *job) { char *result; if (job->jv_status >= JOB_ENDED) // No need to check, dead is dead. result = "dead"; else if (job->jv_status == JOB_FAILED) result = "fail"; else { result = mch_job_status(job); if (job->jv_status == JOB_ENDED) job_cleanup(job); } return result; } /* * Send a signal to "job". Implements job_stop(). * When "type" is not NULL use this for the type. * Otherwise use argvars[1] for the type. */ int job_stop(job_T *job, typval_T *argvars, char *type) { char_u *arg; if (type != NULL) arg = (char_u *)type; else if (argvars[1].v_type == VAR_UNKNOWN) arg = (char_u *)""; else { arg = tv_get_string_chk(&argvars[1]); if (arg == NULL) { emsg(_(e_invarg)); return 0; } } if (job->jv_status == JOB_FAILED) { ch_log(job->jv_channel, "Job failed to start, job_stop() skipped"); return 0; } if (job->jv_status == JOB_ENDED) { ch_log(job->jv_channel, "Job has already ended, job_stop() skipped"); return 0; } ch_log(job->jv_channel, "Stopping job with '%s'", (char *)arg); if (mch_signal_job(job, arg) == FAIL) return 0; // Assume that only "kill" will kill the job. if (job->jv_channel != NULL && STRCMP(arg, "kill") == 0) job->jv_channel->ch_job_killed = TRUE; // We don't try freeing the job, obviously the caller still has a // reference to it. return 1; } void invoke_prompt_callback(void) { typval_T rettv; typval_T argv[2]; char_u *text; char_u *prompt; linenr_T lnum = curbuf->b_ml.ml_line_count; // Add a new line for the prompt before invoking the callback, so that // text can always be inserted above the last line. ml_append(lnum, (char_u *)"", 0, FALSE); curwin->w_cursor.lnum = lnum + 1; curwin->w_cursor.col = 0; if (curbuf->b_prompt_callback.cb_name == NULL || *curbuf->b_prompt_callback.cb_name == NUL) return; text = ml_get(lnum); prompt = prompt_text(); if (STRLEN(text) >= STRLEN(prompt)) text += STRLEN(prompt); argv[0].v_type = VAR_STRING; argv[0].vval.v_string = vim_strsave(text); argv[1].v_type = VAR_UNKNOWN; call_callback(&curbuf->b_prompt_callback, -1, &rettv, 1, argv); clear_tv(&argv[0]); clear_tv(&rettv); } /* * Return TRUE when the interrupt callback was invoked. */ int invoke_prompt_interrupt(void) { typval_T rettv; typval_T argv[1]; if (curbuf->b_prompt_interrupt.cb_name == NULL || *curbuf->b_prompt_interrupt.cb_name == NUL) return FALSE; argv[0].v_type = VAR_UNKNOWN; got_int = FALSE; // don't skip executing commands call_callback(&curbuf->b_prompt_interrupt, -1, &rettv, 0, argv); clear_tv(&rettv); return TRUE; } /* * "prompt_setcallback({buffer}, {callback})" function */ void f_prompt_setcallback(typval_T *argvars, typval_T *rettv UNUSED) { buf_T *buf; callback_T callback; if (check_secure()) return; buf = tv_get_buf(&argvars[0], FALSE); if (buf == NULL) return; callback = get_callback(&argvars[1]); if (callback.cb_name == NULL) return; free_callback(&buf->b_prompt_callback); set_callback(&buf->b_prompt_callback, &callback); } /* * "prompt_setinterrupt({buffer}, {callback})" function */ void f_prompt_setinterrupt(typval_T *argvars, typval_T *rettv UNUSED) { buf_T *buf; callback_T callback; if (check_secure()) return; buf = tv_get_buf(&argvars[0], FALSE); if (buf == NULL) return; callback = get_callback(&argvars[1]); if (callback.cb_name == NULL) return; free_callback(&buf->b_prompt_interrupt); set_callback(&buf->b_prompt_interrupt, &callback); } /* * "prompt_setprompt({buffer}, {text})" function */ void f_prompt_setprompt(typval_T *argvars, typval_T *rettv UNUSED) { buf_T *buf; char_u *text; if (check_secure()) return; buf = tv_get_buf(&argvars[0], FALSE); if (buf == NULL) return; text = tv_get_string(&argvars[1]); vim_free(buf->b_prompt_text); buf->b_prompt_text = vim_strsave(text); } /* * "ch_canread()" function */ void f_ch_canread(typval_T *argvars, typval_T *rettv) { channel_T *channel = get_channel_arg(&argvars[0], FALSE, FALSE, 0); rettv->vval.v_number = 0; if (channel != NULL) rettv->vval.v_number = channel_has_readahead(channel, PART_SOCK) || channel_has_readahead(channel, PART_OUT) || channel_has_readahead(channel, PART_ERR); } /* * "ch_close()" function */ void f_ch_close(typval_T *argvars, typval_T *rettv UNUSED) { channel_T *channel = get_channel_arg(&argvars[0], TRUE, FALSE, 0); if (channel != NULL) { channel_close(channel, FALSE); channel_clear(channel); } } /* * "ch_close()" function */ void f_ch_close_in(typval_T *argvars, typval_T *rettv UNUSED) { channel_T *channel = get_channel_arg(&argvars[0], TRUE, FALSE, 0); if (channel != NULL) channel_close_in(channel); } /* * "ch_getbufnr()" function */ void f_ch_getbufnr(typval_T *argvars, typval_T *rettv) { channel_T *channel = get_channel_arg(&argvars[0], FALSE, FALSE, 0); rettv->vval.v_number = -1; if (channel != NULL) { char_u *what = tv_get_string(&argvars[1]); int part; if (STRCMP(what, "err") == 0) part = PART_ERR; else if (STRCMP(what, "out") == 0) part = PART_OUT; else if (STRCMP(what, "in") == 0) part = PART_IN; else part = PART_SOCK; if (channel->ch_part[part].ch_bufref.br_buf != NULL) rettv->vval.v_number = channel->ch_part[part].ch_bufref.br_buf->b_fnum; } } /* * "ch_getjob()" function */ void f_ch_getjob(typval_T *argvars, typval_T *rettv) { channel_T *channel = get_channel_arg(&argvars[0], FALSE, FALSE, 0); if (channel != NULL) { rettv->v_type = VAR_JOB; rettv->vval.v_job = channel->ch_job; if (channel->ch_job != NULL) ++channel->ch_job->jv_refcount; } } /* * "ch_info()" function */ void f_ch_info(typval_T *argvars, typval_T *rettv UNUSED) { channel_T *channel = get_channel_arg(&argvars[0], FALSE, FALSE, 0); if (channel != NULL && rettv_dict_alloc(rettv) != FAIL) channel_info(channel, rettv->vval.v_dict); } /* * "ch_log()" function */ void f_ch_log(typval_T *argvars, typval_T *rettv UNUSED) { char_u *msg = tv_get_string(&argvars[0]); channel_T *channel = NULL; if (argvars[1].v_type != VAR_UNKNOWN) channel = get_channel_arg(&argvars[1], FALSE, FALSE, 0); ch_log(channel, "%s", msg); } /* * "ch_logfile()" function */ void f_ch_logfile(typval_T *argvars, typval_T *rettv UNUSED) { char_u *fname; char_u *opt = (char_u *)""; char_u buf[NUMBUFLEN]; // Don't open a file in restricted mode. if (check_restricted() || check_secure()) return; fname = tv_get_string(&argvars[0]); if (argvars[1].v_type == VAR_STRING) opt = tv_get_string_buf(&argvars[1], buf); ch_logfile(fname, opt); } /* * "ch_open()" function */ void f_ch_open(typval_T *argvars, typval_T *rettv) { rettv->v_type = VAR_CHANNEL; if (check_restricted() || check_secure()) return; rettv->vval.v_channel = channel_open_func(argvars); } /* * "ch_read()" function */ void f_ch_read(typval_T *argvars, typval_T *rettv) { common_channel_read(argvars, rettv, FALSE, FALSE); } /* * "ch_readblob()" function */ void f_ch_readblob(typval_T *argvars, typval_T *rettv) { common_channel_read(argvars, rettv, TRUE, TRUE); } /* * "ch_readraw()" function */ void f_ch_readraw(typval_T *argvars, typval_T *rettv) { common_channel_read(argvars, rettv, TRUE, FALSE); } /* * "ch_evalexpr()" function */ void f_ch_evalexpr(typval_T *argvars, typval_T *rettv) { ch_expr_common(argvars, rettv, TRUE); } /* * "ch_sendexpr()" function */ void f_ch_sendexpr(typval_T *argvars, typval_T *rettv) { ch_expr_common(argvars, rettv, FALSE); } /* * "ch_evalraw()" function */ void f_ch_evalraw(typval_T *argvars, typval_T *rettv) { ch_raw_common(argvars, rettv, TRUE); } /* * "ch_sendraw()" function */ void f_ch_sendraw(typval_T *argvars, typval_T *rettv) { ch_raw_common(argvars, rettv, FALSE); } /* * "ch_setoptions()" function */ void f_ch_setoptions(typval_T *argvars, typval_T *rettv UNUSED) { channel_T *channel; jobopt_T opt; channel = get_channel_arg(&argvars[0], FALSE, FALSE, 0); if (channel == NULL) return; clear_job_options(&opt); if (get_job_options(&argvars[1], &opt, JO_CB_ALL + JO_TIMEOUT_ALL + JO_MODE_ALL, 0) == OK) channel_set_options(channel, &opt); free_job_options(&opt); } /* * "ch_status()" function */ void f_ch_status(typval_T *argvars, typval_T *rettv) { channel_T *channel; jobopt_T opt; int part = -1; // return an empty string by default rettv->v_type = VAR_STRING; rettv->vval.v_string = NULL; channel = get_channel_arg(&argvars[0], FALSE, FALSE, 0); if (argvars[1].v_type != VAR_UNKNOWN) { clear_job_options(&opt); if (get_job_options(&argvars[1], &opt, JO_PART, 0) == OK && (opt.jo_set & JO_PART)) part = opt.jo_part; } rettv->vval.v_string = vim_strsave((char_u *)channel_status(channel, part)); } /* * Get the job from the argument. * Returns NULL if the job is invalid. */ static job_T * get_job_arg(typval_T *tv) { job_T *job; if (tv->v_type != VAR_JOB) { semsg(_(e_invarg2), tv_get_string(tv)); return NULL; } job = tv->vval.v_job; if (job == NULL) emsg(_("E916: not a valid job")); return job; } /* * "job_getchannel()" function */ void f_job_getchannel(typval_T *argvars, typval_T *rettv) { job_T *job = get_job_arg(&argvars[0]); if (job != NULL) { rettv->v_type = VAR_CHANNEL; rettv->vval.v_channel = job->jv_channel; if (job->jv_channel != NULL) ++job->jv_channel->ch_refcount; } } /* * Implementation of job_info(). */ static void job_info(job_T *job, dict_T *dict) { dictitem_T *item; varnumber_T nr; list_T *l; int i; dict_add_string(dict, "status", (char_u *)job_status(job)); item = dictitem_alloc((char_u *)"channel"); if (item == NULL) return; item->di_tv.v_type = VAR_CHANNEL; item->di_tv.vval.v_channel = job->jv_channel; if (job->jv_channel != NULL) ++job->jv_channel->ch_refcount; if (dict_add(dict, item) == FAIL) dictitem_free(item); #ifdef UNIX nr = job->jv_pid; #else nr = job->jv_proc_info.dwProcessId; #endif dict_add_number(dict, "process", nr); dict_add_string(dict, "tty_in", job->jv_tty_in); dict_add_string(dict, "tty_out", job->jv_tty_out); dict_add_number(dict, "exitval", job->jv_exitval); dict_add_string(dict, "exit_cb", job->jv_exit_cb.cb_name); dict_add_string(dict, "stoponexit", job->jv_stoponexit); #ifdef UNIX dict_add_string(dict, "termsig", job->jv_termsig); #endif #ifdef MSWIN dict_add_string(dict, "tty_type", job->jv_tty_type); #endif l = list_alloc(); if (l != NULL) { dict_add_list(dict, "cmd", l); if (job->jv_argv != NULL) for (i = 0; job->jv_argv[i] != NULL; i++) list_append_string(l, (char_u *)job->jv_argv[i], -1); } } /* * Implementation of job_info() to return info for all jobs. */ static void job_info_all(list_T *l) { job_T *job; typval_T tv; FOR_ALL_JOBS(job) { tv.v_type = VAR_JOB; tv.vval.v_job = job; if (list_append_tv(l, &tv) != OK) return; } } /* * "job_info()" function */ void f_job_info(typval_T *argvars, typval_T *rettv) { if (argvars[0].v_type != VAR_UNKNOWN) { job_T *job = get_job_arg(&argvars[0]); if (job != NULL && rettv_dict_alloc(rettv) != FAIL) job_info(job, rettv->vval.v_dict); } else if (rettv_list_alloc(rettv) == OK) job_info_all(rettv->vval.v_list); } /* * "job_setoptions()" function */ void f_job_setoptions(typval_T *argvars, typval_T *rettv UNUSED) { job_T *job = get_job_arg(&argvars[0]); jobopt_T opt; if (job == NULL) return; clear_job_options(&opt); if (get_job_options(&argvars[1], &opt, JO_STOPONEXIT + JO_EXIT_CB, 0) == OK) job_set_options(job, &opt); free_job_options(&opt); } /* * "job_start()" function */ void f_job_start(typval_T *argvars, typval_T *rettv) { rettv->v_type = VAR_JOB; if (check_restricted() || check_secure()) return; rettv->vval.v_job = job_start(argvars, NULL, NULL, NULL); } /* * "job_status()" function */ void f_job_status(typval_T *argvars, typval_T *rettv) { job_T *job = get_job_arg(&argvars[0]); if (job != NULL) { rettv->v_type = VAR_STRING; rettv->vval.v_string = vim_strsave((char_u *)job_status(job)); } } /* * "job_stop()" function */ void f_job_stop(typval_T *argvars, typval_T *rettv) { job_T *job = get_job_arg(&argvars[0]); if (job != NULL) rettv->vval.v_number = job_stop(job, argvars, NULL); } #endif // FEAT_JOB_CHANNEL