Mercurial > vim
view src/vim9class.c @ 33619:b8b93fef9f60
Added tag v9.0.2051 for changeset 698de9399942f6cb5bf7cf700983e9af797e603e
author | Christian Brabandt <cb@256bit.org> |
---|---|
date | Thu, 19 Oct 2023 17:30:06 +0200 |
parents | 698de9399942 |
children | 41c64cb748c1 |
line wrap: on
line source
/* vi:set ts=8 sts=4 sw=4 noet: * * VIM - Vi IMproved by Bram Moolenaar * * Do ":help uganda" in Vim to read copying and usage conditions. * Do ":help credits" in Vim to see a list of people who contributed. * See README.txt for an overview of the Vim source code. */ /* * vim9class.c: Vim9 script class support */ #define USING_FLOAT_STUFF #include "vim.h" #if defined(FEAT_EVAL) || defined(PROTO) // When not generating protos this is included in proto.h #ifdef PROTO # include "vim9.h" #endif static class_T *first_class = NULL; static class_T *next_nonref_class = NULL; /* * Call this function when a class has been created. It will be added to the * list headed by "first_class". */ static void class_created(class_T *cl) { if (first_class != NULL) { cl->class_next_used = first_class; first_class->class_prev_used = cl; } first_class = cl; } /* * Call this function when a class has been cleared and is about to be freed. * It is removed from the list headed by "first_class". */ static void class_cleared(class_T *cl) { if (cl->class_next_used != NULL) cl->class_next_used->class_prev_used = cl->class_prev_used; if (cl->class_prev_used != NULL) cl->class_prev_used->class_next_used = cl->class_next_used; else if (first_class == cl) first_class = cl->class_next_used; // update the next class to check if needed if (cl == next_nonref_class) next_nonref_class = cl->class_next_used; } /* * Parse a member declaration, both object and class member. * Returns OK or FAIL. When OK then "varname_end" is set to just after the * variable name and "type_ret" is set to the declared or detected type. * "init_expr" is set to the initialisation expression (allocated), if there is * one. For an interface "init_expr" is NULL. */ static int parse_member( exarg_T *eap, char_u *line, char_u *varname, int has_public, // TRUE if "public" seen before "varname" char_u **varname_end, int *has_type, garray_T *type_list, type_T **type_ret, char_u **init_expr) { *varname_end = to_name_end(varname, FALSE); if (*varname == '_' && has_public) { semsg(_(e_public_variable_name_cannot_start_with_underscore_str), line); return FAIL; } char_u *colon = skipwhite(*varname_end); char_u *type_arg = colon; type_T *type = NULL; *has_type = FALSE; if (*colon == ':') { if (VIM_ISWHITE(**varname_end)) { semsg(_(e_no_white_space_allowed_before_colon_str), varname); return FAIL; } if (!VIM_ISWHITE(colon[1])) { semsg(_(e_white_space_required_after_str_str), ":", varname); return FAIL; } type_arg = skipwhite(colon + 1); type = parse_type(&type_arg, type_list, TRUE); if (type == NULL) return FAIL; *has_type = TRUE; } char_u *init_arg = skipwhite(type_arg); if (type == NULL && *init_arg != '=') { emsg(_(e_type_or_initialization_required)); return FAIL; } if (init_expr == NULL && *init_arg == '=') { emsg(_(e_cannot_initialize_variable_in_interface)); return FAIL; } if (*init_arg == '=') { evalarg_T evalarg; char_u *expr_start, *expr_end; if (!VIM_ISWHITE(init_arg[-1]) || !VIM_ISWHITE(init_arg[1])) { semsg(_(e_white_space_required_before_and_after_str_at_str), "=", type_arg); return FAIL; } init_arg = skipwhite(init_arg + 1); fill_evalarg_from_eap(&evalarg, eap, FALSE); (void)skip_expr_concatenate(&init_arg, &expr_start, &expr_end, &evalarg); // No type specified for the member. Set it to "any" and the correct // type will be set when the object is instantiated. if (type == NULL) type = &t_any; *init_expr = vim_strnsave(expr_start, expr_end - expr_start); // Free the memory pointed by expr_start. clear_evalarg(&evalarg, NULL); } else if (!valid_declaration_type(type)) return FAIL; *type_ret = type; return OK; } /* * Add a member to an object or a class. * Returns OK when successful, "init_expr" will be consumed then. * Returns FAIL otherwise, caller might need to free "init_expr". */ static int add_member( garray_T *gap, char_u *varname, char_u *varname_end, int has_public, int has_type, type_T *type, char_u *init_expr) { if (ga_grow(gap, 1) == FAIL) return FAIL; ocmember_T *m = ((ocmember_T *)gap->ga_data) + gap->ga_len; m->ocm_name = vim_strnsave(varname, varname_end - varname); m->ocm_access = has_public ? VIM_ACCESS_ALL : *varname == '_' ? VIM_ACCESS_PRIVATE : VIM_ACCESS_READ; m->ocm_has_type = has_type; m->ocm_type = type; if (init_expr != NULL) m->ocm_init = init_expr; ++gap->ga_len; return OK; } /* * Move the class or object members found while parsing a class into the class. * "gap" contains the found members. * "parent_members" points to the members in the parent class (if any) * "parent_count" is the number of members in the parent class * "members" will be set to the newly allocated array of members and * "member_count" set to the number of members. * Returns OK or FAIL. */ static int add_members_to_class( garray_T *gap, ocmember_T *parent_members, int parent_count, ocmember_T **members, int *member_count) { *member_count = parent_count + gap->ga_len; *members = *member_count == 0 ? NULL : ALLOC_MULT(ocmember_T, *member_count); if (*member_count > 0 && *members == NULL) return FAIL; for (int i = 0; i < parent_count; ++i) { // parent members need to be copied ocmember_T *m = *members + i; *m = parent_members[i]; m->ocm_name = vim_strsave(m->ocm_name); if (m->ocm_init != NULL) m->ocm_init = vim_strsave(m->ocm_init); } if (gap->ga_len > 0) // new members are moved mch_memmove(*members + parent_count, gap->ga_data, sizeof(ocmember_T) * gap->ga_len); VIM_CLEAR(gap->ga_data); return OK; } /* * Convert a member index "idx" of interface "itf" to the member index of class * "cl" implementing that interface. */ int object_index_from_itf_index(class_T *itf, int is_method, int idx, class_T *cl) { if (idx >= (is_method ? itf->class_obj_method_count : itf->class_obj_member_count)) { siemsg("index %d out of range for interface %s", idx, itf->class_name); return 0; } // If "cl" is the interface or the class that is extended, then the method // index can be used directly and there is no need to search for the method // index in one of the child classes. if (cl == itf) return idx; itf2class_T *i2c = NULL; int searching = TRUE; int method_offset = 0; for (class_T *super = cl; super != NULL && searching; super = super->class_extends) { for (i2c = itf->class_itf2class; i2c != NULL; i2c = i2c->i2c_next) { if (i2c->i2c_class == super && i2c->i2c_is_method == is_method) { searching = FALSE; break; } } if (searching && is_method) // The parent class methods are stored after the current class // methods. method_offset += super->class_obj_method_count_child; } if (i2c == NULL) { siemsg("class %s not found on interface %s", cl->class_name, itf->class_name); return 0; } // A table follows the i2c for the class int *table = (int *)(i2c + 1); // "method_offset" is 0, if method is in the current class. If method // is in a parent class, then it is non-zero. return table[idx] + method_offset; } /* * Check whether a class named "extends_name" is present. If the class is * valid, then "extends_clp" is set with the class pointer. * Returns TRUE if the class name "extends_names" is a valid class. */ static int validate_extends_class( char_u *extends_name, class_T **extends_clp, int is_class) { typval_T tv; int success = FALSE; tv.v_type = VAR_UNKNOWN; if (eval_variable_import(extends_name, &tv) == FAIL) { semsg(_(e_class_name_not_found_str), extends_name); return success; } if (tv.v_type != VAR_CLASS || tv.vval.v_class == NULL || (is_class && (tv.vval.v_class->class_flags & CLASS_INTERFACE) != 0) || (!is_class && (tv.vval.v_class->class_flags & CLASS_INTERFACE) == 0)) // a interface cannot extend a class and a class cannot extend an // interface. semsg(_(e_cannot_extend_str), extends_name); else { class_T *extends_cl = tv.vval.v_class; ++extends_cl->class_refcount; *extends_clp = extends_cl; success = TRUE; } clear_tv(&tv); return success; } /* * Check method names in the parent class lineage to make sure the access is * the same for overridden methods. */ static int validate_extends_methods( garray_T *objmethods_gap, class_T *extends_cl) { class_T *super = extends_cl; int method_count = objmethods_gap->ga_len; ufunc_T **cl_fp = (ufunc_T **)(objmethods_gap->ga_data); while (super != NULL) { int extends_method_count = super->class_obj_method_count_child; if (extends_method_count == 0) { super = super->class_extends; continue; } ufunc_T **extends_methods = super->class_obj_methods; for (int i = 0; i < extends_method_count; i++) { char_u *pstr = extends_methods[i]->uf_name; int extends_private = (*pstr == '_'); if (extends_private) pstr++; // When comparing the method names, ignore the access type (public // and private methods are considered the same). for (int j = 0; j < method_count; j++) { char_u *qstr = cl_fp[j]->uf_name; int priv_method = (*qstr == '_'); if (priv_method) qstr++; if (STRCMP(pstr, qstr) == 0 && priv_method != extends_private) { // Method access is different between the super class and // the subclass semsg(_(e_method_str_of_class_str_has_different_access), cl_fp[j]->uf_name, super->class_name); return FALSE; } } } super = super->class_extends; } return TRUE; } /* * Check whether a object member variable in "objmembers_gap" is a duplicate of * a member in any of the extended parent class lineage. Returns TRUE if there * are no duplicates. */ static int extends_check_dup_members( garray_T *objmembers_gap, class_T *extends_cl) { int member_count = objmembers_gap->ga_len; if (member_count == 0) return TRUE; ocmember_T *members = (ocmember_T *)(objmembers_gap->ga_data); // Validate each member variable for (int c_i = 0; c_i < member_count; c_i++) { class_T *p_cl = extends_cl; ocmember_T *c_m = members + c_i; char_u *pstr = (*c_m->ocm_name == '_') ? c_m->ocm_name + 1 : c_m->ocm_name; // Check in all the parent classes in the lineage while (p_cl != NULL) { int p_member_count = p_cl->class_obj_member_count; if (p_member_count == 0) { p_cl = p_cl->class_extends; continue; } ocmember_T *p_members = p_cl->class_obj_members; // Compare against all the members in the parent class for (int p_i = 0; p_i < p_member_count; p_i++) { ocmember_T *p_m = p_members + p_i; char_u *qstr = (*p_m->ocm_name == '_') ? p_m->ocm_name + 1 : p_m->ocm_name; if (STRCMP(pstr, qstr) == 0) { semsg(_(e_duplicate_variable_str), c_m->ocm_name); return FALSE; } } p_cl = p_cl->class_extends; } } return TRUE; } /* * Compare the variable type of interface variables in "objmembers_gap" against * the variable in any of the extended super interface lineage. Used to * compare the variable types when extending interfaces. Returns TRUE if the * variable types are the same. */ static int extends_check_intf_var_type( garray_T *objmembers_gap, class_T *extends_cl) { int member_count = objmembers_gap->ga_len; if (member_count == 0) return TRUE; ocmember_T *members = (ocmember_T *)(objmembers_gap->ga_data); // Validate each member variable for (int c_i = 0; c_i < member_count; c_i++) { class_T *p_cl = extends_cl; ocmember_T *c_m = members + c_i; int var_found = FALSE; // Check in all the parent classes in the lineage while (p_cl != NULL && !var_found) { int p_member_count = p_cl->class_obj_member_count; if (p_member_count == 0) { p_cl = p_cl->class_extends; continue; } ocmember_T *p_members = p_cl->class_obj_members; // Compare against all the members in the parent class for (int p_i = 0; p_i < p_member_count; p_i++) { where_T where = WHERE_INIT; ocmember_T *p_m = p_members + p_i; if (STRCMP(p_m->ocm_name, c_m->ocm_name) != 0) continue; // Ensure the type is matching. where.wt_func_name = (char *)c_m->ocm_name; where.wt_kind = WT_MEMBER; if (check_type(p_m->ocm_type, c_m->ocm_type, TRUE, where) == FAIL) return FALSE; var_found = TRUE; } p_cl = p_cl->class_extends; } } return TRUE; } /* * When extending an abstract class, check whether all the abstract methods in * the parent class are implemented. Returns TRUE if all the methods are * implemented. */ static int validate_abstract_class_methods( garray_T *classmethods_gap, garray_T *objmethods_gap, class_T *extends_cl) { for (int loop = 1; loop <= 2; ++loop) { // loop == 1: check class methods // loop == 2: check object methods int extends_method_count = loop == 1 ? extends_cl->class_class_function_count : extends_cl->class_obj_method_count; if (extends_method_count == 0) continue; ufunc_T **extends_methods = loop == 1 ? extends_cl->class_class_functions : extends_cl->class_obj_methods; int method_count = loop == 1 ? classmethods_gap->ga_len : objmethods_gap->ga_len; ufunc_T **cl_fp = (ufunc_T **)(loop == 1 ? classmethods_gap->ga_data : objmethods_gap->ga_data); for (int i = 0; i < extends_method_count; i++) { ufunc_T *uf = extends_methods[i]; if (!IS_ABSTRACT_METHOD(uf)) continue; int method_found = FALSE; for (int j = 0; j < method_count; j++) { if (STRCMP(uf->uf_name, cl_fp[j]->uf_name) == 0) { method_found = TRUE; break; } } if (!method_found) { semsg(_(e_abstract_method_str_not_found), uf->uf_name); return FALSE; } } } return TRUE; } /* * Returns TRUE if the interface variable "if_var" is present in the list of * variables in "cl_mt" or in the parent lineage of one of the extended classes * in "extends_cl". For a class variable, 'is_class_var' is TRUE. */ static int intf_variable_present( char_u *intf_class_name, ocmember_T *if_var, ocmember_T *cl_mt, int cl_member_count, class_T *extends_cl) { int variable_present = FALSE; for (int cl_i = 0; cl_i < cl_member_count; ++cl_i) { ocmember_T *m = &cl_mt[cl_i]; where_T where = WHERE_INIT; if (STRCMP(if_var->ocm_name, m->ocm_name) != 0) continue; // Ensure the access type is same if (if_var->ocm_access != m->ocm_access) { semsg(_(e_variable_str_of_interface_str_has_different_access), if_var->ocm_name, intf_class_name); return FALSE; } // Ensure the type is matching. if (m->ocm_type == &t_any) { // variable type is not specified. Use the variable type in the // interface. m->ocm_type = if_var->ocm_type; } else { where.wt_func_name = (char *)m->ocm_name; where.wt_kind = WT_MEMBER; if (check_type(if_var->ocm_type, m->ocm_type, TRUE, where) == FAIL) return FALSE; } variable_present = TRUE; break; } if (!variable_present && extends_cl != NULL) { int ext_cl_count = extends_cl->class_obj_member_count; ocmember_T *ext_cl_mt = extends_cl->class_obj_members; return intf_variable_present(intf_class_name, if_var, ext_cl_mt, ext_cl_count, extends_cl->class_extends); } return variable_present; } /* * Check the variables of the interface class "ifcl" match object variables * ("objmembers_gap") of a class. * Returns TRUE if the object variables names are valid. */ static int validate_interface_variables( char_u *intf_class_name, class_T *ifcl, garray_T *objmembers_gap, class_T *extends_cl) { int if_count = ifcl->class_obj_member_count; if (if_count == 0) return TRUE; ocmember_T *if_ms = ifcl->class_obj_members; ocmember_T *cl_ms = (ocmember_T *)(objmembers_gap->ga_data); int cl_count = objmembers_gap->ga_len; for (int if_i = 0; if_i < if_count; ++if_i) { if (!intf_variable_present(intf_class_name, &if_ms[if_i], cl_ms, cl_count, extends_cl)) { semsg(_(e_variable_str_of_interface_str_not_implemented), if_ms[if_i].ocm_name, intf_class_name); return FALSE; } } return TRUE; } /* * Returns TRUE if the method signature of "if_method" and "cl_method" matches. */ static int intf_method_type_matches(ufunc_T *if_method, ufunc_T *cl_method) { where_T where = WHERE_INIT; // Ensure the type is matching. where.wt_func_name = (char *)if_method->uf_name; where.wt_kind = WT_METHOD; if (check_type(if_method->uf_func_type, cl_method->uf_func_type, TRUE, where) == FAIL) return FALSE; return TRUE; } /* * Returns TRUE if the interface method "if_ufunc" is present in the list of * methods in "cl_fp" or in the parent lineage of one of the extended classes * in "extends_cl". For a class method, 'is_class_method' is TRUE. */ static int intf_method_present( ufunc_T *if_ufunc, ufunc_T **cl_fp, int cl_count, class_T *extends_cl) { int method_present = FALSE; for (int cl_i = 0; cl_i < cl_count; ++cl_i) { char_u *cl_name = cl_fp[cl_i]->uf_name; if (STRCMP(if_ufunc->uf_name, cl_name) == 0) { // Ensure the type is matching. if (!intf_method_type_matches(if_ufunc, cl_fp[cl_i])) return FALSE; method_present = TRUE; break; } } if (!method_present && extends_cl != NULL) { ufunc_T **ext_cl_fp = (ufunc_T **)(extends_cl->class_obj_methods); int ext_cl_count = extends_cl->class_obj_method_count; return intf_method_present(if_ufunc, ext_cl_fp, ext_cl_count, extends_cl->class_extends); } return method_present; } /* * Validate that a new class implements all the class/instance methods in the * interface "ifcl". The new class methods are in "classfunctions_gap" and the * new object methods are in "objmemthods_gap". Also validates the method * types. * Returns TRUE if all the interface class/object methods are implemented in * the new class. */ static int validate_interface_methods( char_u *intf_class_name, class_T *ifcl, garray_T *objmethods_gap, class_T *extends_cl) { int if_count = ifcl->class_obj_method_count; if (if_count == 0) return TRUE; ufunc_T **if_fp = ifcl->class_obj_methods; ufunc_T **cl_fp = (ufunc_T **)(objmethods_gap->ga_data); int cl_count = objmethods_gap->ga_len; for (int if_i = 0; if_i < if_count; ++if_i) { char_u *if_name = if_fp[if_i]->uf_name; if (!intf_method_present(if_fp[if_i], cl_fp, cl_count, extends_cl)) { semsg(_(e_method_str_of_interface_str_not_implemented), if_name, intf_class_name); return FALSE; } } return TRUE; } /* * Validate all the "implements" classes when creating a new class. The * classes are returned in "intf_classes". The class functions, class members, * object methods and object members in the new class are in * "classfunctions_gap", "classmembers_gap", "objmethods_gap", and * "objmembers_gap" respectively. */ static int validate_implements_classes( garray_T *impl_gap, class_T **intf_classes, garray_T *objmethods_gap, garray_T *objmembers_gap, class_T *extends_cl) { int success = TRUE; for (int i = 0; i < impl_gap->ga_len && success; ++i) { char_u *impl = ((char_u **)impl_gap->ga_data)[i]; typval_T tv; tv.v_type = VAR_UNKNOWN; if (eval_variable_import(impl, &tv) == FAIL) { semsg(_(e_interface_name_not_found_str), impl); success = FALSE; break; } if (tv.v_type != VAR_CLASS || tv.vval.v_class == NULL || (tv.vval.v_class->class_flags & CLASS_INTERFACE) == 0) { semsg(_(e_not_valid_interface_str), impl); success = FALSE; clear_tv(&tv); break; } class_T *ifcl = tv.vval.v_class; intf_classes[i] = ifcl; ++ifcl->class_refcount; // check the variables of the interface match the members of the class success = validate_interface_variables(impl, ifcl, objmembers_gap, extends_cl); // check the functions/methods of the interface match the // functions/methods of the class if (success) success = validate_interface_methods(impl, ifcl, objmethods_gap, extends_cl); clear_tv(&tv); } return success; } /* * Check no function argument name is used as a class member. * (Object members are always accessed with "this." prefix, so no need * to check them.) */ static int check_func_arg_names( garray_T *classfunctions_gap, garray_T *objmethods_gap, garray_T *classmembers_gap) { // loop 1: class functions, loop 2: object methods for (int loop = 1; loop <= 2; ++loop) { garray_T *gap = loop == 1 ? classfunctions_gap : objmethods_gap; for (int fi = 0; fi < gap->ga_len; ++fi) { ufunc_T *uf = ((ufunc_T **)gap->ga_data)[fi]; for (int i = 0; i < uf->uf_args.ga_len; ++i) { char_u *aname = ((char_u **)uf->uf_args.ga_data)[i]; garray_T *mgap = classmembers_gap; // Check all the class member names for (int mi = 0; mi < mgap->ga_len; ++mi) { char_u *mname = ((ocmember_T *)mgap->ga_data + mi)->ocm_name; if (STRCMP(aname, mname) == 0) { if (uf->uf_script_ctx.sc_sid > 0) SOURCING_LNUM = uf->uf_script_ctx.sc_lnum; semsg(_(e_argument_already_declared_in_class_str), aname); return FALSE; } } } } } return TRUE; } /* * Returns TRUE if 'varname' is a reserved keyword name */ static int is_reserved_varname(char_u *varname, char_u *varname_end) { int reserved = FALSE; char_u save_varname_end = *varname_end; *varname_end = NUL; reserved = check_reserved_name(varname, FALSE) == FAIL; *varname_end = save_varname_end; return reserved; } /* * Returns TRUE if the variable "varname" is already defined either as a class * variable or as an object variable. */ static int is_duplicate_variable( garray_T *class_members, garray_T *obj_members, char_u *varname, char_u *varname_end) { char_u *name = vim_strnsave(varname, varname_end - varname); char_u *pstr = (*name == '_') ? name + 1 : name; int dup = FALSE; for (int loop = 1; loop <= 2; loop++) { // loop == 1: class variables, loop == 2: object variables garray_T *vgap = (loop == 1) ? class_members : obj_members; for (int i = 0; i < vgap->ga_len; ++i) { ocmember_T *m = ((ocmember_T *)vgap->ga_data) + i; char_u *qstr = *m->ocm_name == '_' ? m->ocm_name + 1 : m->ocm_name; if (STRCMP(pstr, qstr) == 0) { semsg(_(e_duplicate_variable_str), name); dup = TRUE; break; } } } vim_free(name); return dup; } /* * Returns TRUE if the method "name" is already defined. */ static int is_duplicate_method( garray_T *classmethods_gap, garray_T *objmethods_gap, char_u *name) { char_u *pstr = (*name == '_') ? name + 1 : name; // loop 1: class methods, loop 2: object methods for (int loop = 1; loop <= 2; loop++) { garray_T *fgap = (loop == 1) ? classmethods_gap : objmethods_gap; for (int i = 0; i < fgap->ga_len; ++i) { char_u *n = ((ufunc_T **)fgap->ga_data)[i]->uf_name; char_u *qstr = *n == '_' ? n + 1 : n; if (STRCMP(pstr, qstr) == 0) { semsg(_(e_duplicate_function_str), name); return TRUE; } } } return FALSE; } /* * Returns TRUE if the constructor is valid. */ static int is_valid_constructor(ufunc_T *uf, int is_abstract, int has_static) { // Constructors are not allowed in abstract classes. if (is_abstract) { emsg(_(e_cannot_define_new_method_in_abstract_class)); return FALSE; } // A constructor is always static, no need to define it so. if (has_static) { emsg(_(e_cannot_define_new_method_as_static)); return FALSE; } // A return type should not be specified for the new() // constructor method. if (uf->uf_ret_type->tt_type != VAR_VOID) { emsg(_(e_cannot_use_a_return_type_with_new_method)); return FALSE; } return TRUE; } /* * Update the interface class lookup table for the member index on the * interface to the member index in the class implementing the interface. * And a lookup table for the object method index on the interface * to the object method index in the class implementing the interface. * This is also used for updating the lookup table for the extended class * hierarchy. */ static int update_member_method_lookup_table( class_T *ifcl, class_T *cl, garray_T *objmethods, int pobj_method_offset) { if (ifcl == NULL) return OK; // Table for members. itf2class_T *if2cl = alloc_clear(sizeof(itf2class_T) + ifcl->class_obj_member_count * sizeof(int)); if (if2cl == NULL) return FAIL; if2cl->i2c_next = ifcl->class_itf2class; ifcl->class_itf2class = if2cl; if2cl->i2c_class = cl; if2cl->i2c_is_method = FALSE; for (int if_i = 0; if_i < ifcl->class_obj_member_count; ++if_i) for (int cl_i = 0; cl_i < cl->class_obj_member_count; ++cl_i) { if (STRCMP(ifcl->class_obj_members[if_i].ocm_name, cl->class_obj_members[cl_i].ocm_name) == 0) { int *table = (int *)(if2cl + 1); table[if_i] = cl_i; break; } } // Table for methods. if2cl = alloc_clear(sizeof(itf2class_T) + ifcl->class_obj_method_count * sizeof(int)); if (if2cl == NULL) return FAIL; if2cl->i2c_next = ifcl->class_itf2class; ifcl->class_itf2class = if2cl; if2cl->i2c_class = cl; if2cl->i2c_is_method = TRUE; for (int if_i = 0; if_i < ifcl->class_obj_method_count; ++if_i) { int done = FALSE; for (int cl_i = 0; cl_i < objmethods->ga_len; ++cl_i) { if (STRCMP(ifcl->class_obj_methods[if_i]->uf_name, ((ufunc_T **)objmethods->ga_data)[cl_i]->uf_name) == 0) { int *table = (int *)(if2cl + 1); table[if_i] = cl_i; done = TRUE; break; } } // extended class object method is not overridden by the child class. // Keep the method declared in one of the parent classes in the // lineage. if (!done) { // If "ifcl" is not the immediate parent of "cl", then search in // the intermediate parent classes. if (cl->class_extends != ifcl) { class_T *parent = cl->class_extends; int method_offset = objmethods->ga_len; while (!done && parent != NULL && parent != ifcl) { for (int cl_i = 0; cl_i < parent->class_obj_method_count_child; ++cl_i) { if (STRCMP(ifcl->class_obj_methods[if_i]->uf_name, parent->class_obj_methods[cl_i]->uf_name) == 0) { int *table = (int *)(if2cl + 1); table[if_i] = method_offset + cl_i; done = TRUE; break; } } method_offset += parent->class_obj_method_count_child; parent = parent->class_extends; } } if (!done) { int *table = (int *)(if2cl + 1); table[if_i] = pobj_method_offset + if_i; } } } return OK; } /* * Update the member and object method lookup tables for a new class in the * interface class. * For each interface add a lookup table for the member index on the interface * to the member index in the new class. And a lookup table for the object * method index on the interface to the object method index in the new class. */ static int add_lookup_tables(class_T *cl, class_T *extends_cl, garray_T *objmethods_gap) { // update the lookup table for all the implemented interfaces for (int i = 0; i < cl->class_interface_count; ++i) { class_T *ifcl = cl->class_interfaces_cl[i]; // update the lookup table for this interface and all its super // interfaces. while (ifcl != NULL) { if (update_member_method_lookup_table(ifcl, cl, objmethods_gap, 0) == FAIL) return FAIL; ifcl = ifcl->class_extends; } } // Update the lookup table for the extended class, if any if (extends_cl != NULL) { class_T *pclass = extends_cl; int pobj_method_offset = objmethods_gap->ga_len; // Update the entire lineage of extended classes. while (pclass != NULL) { if (update_member_method_lookup_table(pclass, cl, objmethods_gap, pobj_method_offset) == FAIL) return FAIL; pobj_method_offset += pclass->class_obj_method_count_child; pclass = pclass->class_extends; } } return OK; } /* * Add class members to a new class. Allocate a typval for each class member * and initialize it. */ static void add_class_members(class_T *cl, exarg_T *eap, garray_T *type_list_gap) { // Allocate a typval for each class member and initialize it. cl->class_members_tv = ALLOC_CLEAR_MULT(typval_T, cl->class_class_member_count); if (cl->class_members_tv == NULL) return; for (int i = 0; i < cl->class_class_member_count; ++i) { ocmember_T *m = &cl->class_class_members[i]; typval_T *tv = &cl->class_members_tv[i]; if (m->ocm_init != NULL) { typval_T *etv = eval_expr(m->ocm_init, eap); if (etv != NULL) { if (m->ocm_type->tt_type == VAR_ANY && !m->ocm_has_type && etv->v_type != VAR_SPECIAL) // If the member variable type is not yet set, then use // the initialization expression type. m->ocm_type = typval2type(etv, get_copyID(), type_list_gap, TVTT_DO_MEMBER|TVTT_MORE_SPECIFIC); *tv = *etv; vim_free(etv); } } else { // TODO: proper default value tv->v_type = m->ocm_type->tt_type; tv->vval.v_string = NULL; } } } /* * Add a default constructor method (new()) to the class "cl". */ static void add_default_constructor( class_T *cl, garray_T *classfunctions_gap, garray_T *type_list_gap) { garray_T fga; ga_init2(&fga, 1, 1000); ga_concat(&fga, (char_u *)"new("); for (int i = 0; i < cl->class_obj_member_count; ++i) { if (i > 0) ga_concat(&fga, (char_u *)", "); ga_concat(&fga, (char_u *)"this."); ocmember_T *m = cl->class_obj_members + i; ga_concat(&fga, (char_u *)m->ocm_name); ga_concat(&fga, (char_u *)" = v:none"); } ga_concat(&fga, (char_u *)")\nenddef\n"); ga_append(&fga, NUL); exarg_T fea; CLEAR_FIELD(fea); fea.cmdidx = CMD_def; fea.cmd = fea.arg = fga.ga_data; garray_T lines_to_free; ga_init2(&lines_to_free, sizeof(char_u *), 50); ufunc_T *nf = define_function(&fea, NULL, &lines_to_free, CF_CLASS, cl->class_obj_members, cl->class_obj_member_count); ga_clear_strings(&lines_to_free); vim_free(fga.ga_data); if (nf != NULL && ga_grow(classfunctions_gap, 1) == OK) { ((ufunc_T **)classfunctions_gap->ga_data)[classfunctions_gap->ga_len] = nf; ++classfunctions_gap->ga_len; nf->uf_flags |= FC_NEW; nf->uf_ret_type = get_type_ptr(type_list_gap); if (nf->uf_ret_type != NULL) { nf->uf_ret_type->tt_type = VAR_OBJECT; nf->uf_ret_type->tt_class = cl; nf->uf_ret_type->tt_argcount = 0; nf->uf_ret_type->tt_args = NULL; } } } /* * Add the class methods and object methods to the new class "cl". * When extending a class "extends_cl", add the instance methods from the * parent class also. */ static int add_classfuncs_objmethods( class_T *cl, class_T *extends_cl, garray_T *classfunctions_gap, garray_T *objmethods_gap) { // loop 1: class functions, loop 2: object methods for (int loop = 1; loop <= 2; ++loop) { garray_T *gap = loop == 1 ? classfunctions_gap : objmethods_gap; int *fcount = loop == 1 ? &cl->class_class_function_count : &cl->class_obj_method_count; ufunc_T ***fup = loop == 1 ? &cl->class_class_functions : &cl->class_obj_methods; int parent_count = 0; if (extends_cl != NULL) // Include object methods from the parent. // Don't include the parent class methods. parent_count = loop == 1 ? 0 : extends_cl->class_obj_method_count; *fcount = parent_count + gap->ga_len; if (*fcount == 0) { *fup = NULL; continue; } *fup = ALLOC_MULT(ufunc_T *, *fcount); if (*fup == NULL) return FAIL; if (gap->ga_len != 0) mch_memmove(*fup, gap->ga_data, sizeof(ufunc_T *) * gap->ga_len); vim_free(gap->ga_data); if (loop == 1) cl->class_class_function_count_child = gap->ga_len; else cl->class_obj_method_count_child = gap->ga_len; if (loop == 2) { // Copy instance methods from the parent. for (int i = 0; i < parent_count; ++i) { // Can't use the same parent function, because "uf_class" is // different and compilation will have a different result. // Put them after the functions in the current class, object // methods may be overruled, then "super.Method()" is used to // find a method from the parent. ufunc_T *pf = (extends_cl->class_obj_methods)[i]; (*fup)[gap->ga_len + i] = copy_function(pf); // If the child class overrides a function from the parent // the signature must be equal. char_u *pname = pf->uf_name; for (int ci = 0; ci < gap->ga_len; ++ci) { ufunc_T *cf = (*fup)[ci]; char_u *cname = cf->uf_name; if (STRCMP(pname, cname) == 0) { where_T where = WHERE_INIT; where.wt_func_name = (char *)pname; where.wt_kind = WT_METHOD; (void)check_type(pf->uf_func_type, cf->uf_func_type, TRUE, where); } } } } // Set the class pointer on all the functions and object methods. for (int i = 0; i < *fcount; ++i) { ufunc_T *fp = (*fup)[i]; fp->uf_class = cl; if (i < gap->ga_len) fp->uf_defclass = cl; if (loop == 2) fp->uf_flags |= FC_OBJECT; } } return OK; } /* * Handle ":class" and ":abstract class" up to ":endclass". * Handle ":interface" up to ":endinterface". */ void ex_class(exarg_T *eap) { int is_class = eap->cmdidx == CMD_class; // FALSE for :interface long start_lnum = SOURCING_LNUM; char_u *arg = eap->arg; int is_abstract = eap->cmdidx == CMD_abstract; if (is_abstract) { if (STRNCMP(arg, "class", 5) != 0 || !VIM_ISWHITE(arg[5])) { semsg(_(e_invalid_argument_str), arg); return; } arg = skipwhite(arg + 5); is_class = TRUE; } if (!current_script_is_vim9() || (cmdmod.cmod_flags & CMOD_LEGACY) || !getline_equal(eap->getline, eap->cookie, getsourceline)) { if (is_class) emsg(_(e_class_can_only_be_defined_in_vim9_script)); else emsg(_(e_interface_can_only_be_defined_in_vim9_script)); return; } if (!ASCII_ISUPPER(*arg)) { if (is_class) semsg(_(e_class_name_must_start_with_uppercase_letter_str), arg); else semsg(_(e_interface_name_must_start_with_uppercase_letter_str), arg); return; } char_u *name_end = find_name_end(arg, NULL, NULL, FNE_CHECK_START); if (!IS_WHITE_OR_NUL(*name_end)) { semsg(_(e_white_space_required_after_name_str), arg); return; } char_u *name_start = arg; // "export class" gets used when creating the class, don't use "is_export" // for the items inside the class. int class_export = is_export; is_export = FALSE; // TODO: // generics: <Tkey, Tentry> // Name for "extends BaseClass" char_u *extends = NULL; // Names for "implements SomeInterface" garray_T ga_impl; ga_init2(&ga_impl, sizeof(char_u *), 5); arg = skipwhite(name_end); while (*arg != NUL && *arg != '#' && *arg != '\n') { // TODO: // specifies SomeInterface if (STRNCMP(arg, "extends", 7) == 0 && IS_WHITE_OR_NUL(arg[7])) { if (extends != NULL) { emsg(_(e_duplicate_extends)); goto early_ret; } arg = skipwhite(arg + 7); char_u *end = find_name_end(arg, NULL, NULL, FNE_CHECK_START); if (!IS_WHITE_OR_NUL(*end)) { semsg(_(e_white_space_required_after_name_str), arg); goto early_ret; } extends = vim_strnsave(arg, end - arg); if (extends == NULL) goto early_ret; arg = skipwhite(end + 1); } else if (STRNCMP(arg, "implements", 10) == 0 && IS_WHITE_OR_NUL(arg[10])) { if (!is_class) { emsg(_(e_interface_cannot_use_implements)); goto early_ret; } if (ga_impl.ga_len > 0) { emsg(_(e_duplicate_implements)); goto early_ret; } arg = skipwhite(arg + 10); for (;;) { char_u *impl_end = find_name_end(arg, NULL, NULL, FNE_CHECK_START); if ((!IS_WHITE_OR_NUL(*impl_end) && *impl_end != ',') || (*impl_end == ',' && !IS_WHITE_OR_NUL(*(impl_end + 1)))) { semsg(_(e_white_space_required_after_name_str), arg); goto early_ret; } if (impl_end - arg == 0) { emsg(_(e_missing_name_after_implements)); goto early_ret; } char_u *iname = vim_strnsave(arg, impl_end - arg); if (iname == NULL) goto early_ret; for (int i = 0; i < ga_impl.ga_len; ++i) if (STRCMP(((char_u **)ga_impl.ga_data)[i], iname) == 0) { semsg(_(e_duplicate_interface_after_implements_str), iname); vim_free(iname); goto early_ret; } if (ga_add_string(&ga_impl, iname) == FAIL) { vim_free(iname); goto early_ret; } if (*impl_end != ',') { arg = skipwhite(impl_end); break; } arg = skipwhite(impl_end + 1); } } else { semsg(_(e_trailing_characters_str), arg); early_ret: vim_free(extends); ga_clear_strings(&ga_impl); return; } } garray_T type_list; // list of pointers to allocated types ga_init2(&type_list, sizeof(type_T *), 10); // Growarray with class members declared in the class. garray_T classmembers; ga_init2(&classmembers, sizeof(ocmember_T), 10); // Growarray with functions declared in the class. garray_T classfunctions; ga_init2(&classfunctions, sizeof(ufunc_T *), 10); // Growarray with object members declared in the class. garray_T objmembers; ga_init2(&objmembers, sizeof(ocmember_T), 10); // Growarray with object methods declared in the class. garray_T objmethods; ga_init2(&objmethods, sizeof(ufunc_T *), 10); /* * Go over the body of the class/interface until "endclass" or * "endinterface" is found. */ char_u *theline = NULL; int success = FALSE; for (;;) { vim_free(theline); theline = eap->getline(':', eap->cookie, 0, GETLINE_CONCAT_ALL); if (theline == NULL) break; char_u *line = skipwhite(theline); // Skip empty and comment lines. if (*line == NUL) continue; if (*line == '#') { if (vim9_bad_comment(line)) break; continue; } char_u *p = line; char *end_name = is_class ? "endclass" : "endinterface"; if (checkforcmd(&p, end_name, is_class ? 4 : 5)) { if (STRNCMP(line, end_name, is_class ? 8 : 12) != 0) semsg(_(e_command_cannot_be_shortened_str), line); else if (*p == '|' || !ends_excmd2(line, p)) semsg(_(e_trailing_characters_str), p); else success = TRUE; break; } char *wrong_name = is_class ? "endinterface" : "endclass"; if (checkforcmd(&p, wrong_name, is_class ? 5 : 4)) { semsg(_(e_invalid_command_str_expected_str), line, end_name); break; } int has_public = FALSE; if (checkforcmd(&p, "public", 3)) { if (STRNCMP(line, "public", 6) != 0) { semsg(_(e_command_cannot_be_shortened_str), line); break; } if (!is_class) { emsg(_(e_public_variable_not_supported_in_interface)); break; } has_public = TRUE; p = skipwhite(line + 6); if (STRNCMP(p, "this", 4) != 0 && STRNCMP(p, "static", 6) != 0) { emsg(_(e_public_must_be_followed_by_this_or_static)); break; } } int abstract_method = FALSE; char_u *pa = p; if (checkforcmd(&p, "abstract", 3)) { if (STRNCMP(pa, "abstract", 8) != 0) { semsg(_(e_command_cannot_be_shortened_str), pa); break; } if (!is_class) // ignore "abstract" in an interface (as all the methods in an // interface are abstract. p = skipwhite(pa + 8); else { if (!is_abstract) { semsg(_(e_abstract_method_in_concrete_class), pa); break; } abstract_method = TRUE; p = skipwhite(pa + 8); if (STRNCMP(p, "def", 3) != 0 && STRNCMP(p, "static", 6) != 0) { emsg(_(e_abstract_must_be_followed_by_def_or_static)); break; } } } int has_static = FALSE; char_u *ps = p; if (checkforcmd(&p, "static", 4)) { if (STRNCMP(ps, "static", 6) != 0) { semsg(_(e_command_cannot_be_shortened_str), ps); break; } if (!is_class) { emsg(_(e_static_member_not_supported_in_interface)); break; } has_static = TRUE; p = skipwhite(ps + 6); } // object members (public, read access, private): // "this._varname" // "this.varname" // "public this.varname" if (STRNCMP(p, "this", 4) == 0) { if (p[4] != '.' || !eval_isnamec1(p[5])) { semsg(_(e_invalid_object_variable_declaration_str), p); break; } if (has_static) { emsg(_(e_static_cannot_be_followed_by_this)); break; } char_u *varname = p + 5; char_u *varname_end = NULL; type_T *type = NULL; char_u *init_expr = NULL; int has_type = FALSE; if (!is_class && *varname == '_') { // private variables are not supported in an interface semsg(_(e_private_variable_not_supported_in_interface), varname); break; } if (parse_member(eap, line, varname, has_public, &varname_end, &has_type, &type_list, &type, is_class ? &init_expr: NULL) == FAIL) break; if (is_reserved_varname(varname, varname_end)) { vim_free(init_expr); break; } if (is_duplicate_variable(&classmembers, &objmembers, varname, varname_end)) { vim_free(init_expr); break; } if (add_member(&objmembers, varname, varname_end, has_public, has_type, type, init_expr) == FAIL) { vim_free(init_expr); break; } } // constructors: // def new() // enddef // def newOther() // enddef // object methods and class functions: // def SomeMethod() // enddef // static def ClassFunction() // enddef // TODO: // def <Tval> someMethod() // enddef else if (checkforcmd(&p, "def", 3)) { exarg_T ea; garray_T lines_to_free; if (has_public) { // "public" keyword is not supported when defining an object or // class method emsg(_(e_public_keyword_not_supported_for_method)); break; } if (*p == NUL) { // No method name following def semsg(_(e_not_valid_command_in_class_str), line); break; } CLEAR_FIELD(ea); ea.cmd = line; ea.arg = p; ea.cmdidx = CMD_def; ea.getline = eap->getline; ea.cookie = eap->cookie; ga_init2(&lines_to_free, sizeof(char_u *), 50); int class_flags; if (is_class) class_flags = abstract_method ? CF_ABSTRACT_METHOD : CF_CLASS; else class_flags = CF_INTERFACE; ufunc_T *uf = define_function(&ea, NULL, &lines_to_free, class_flags, objmembers.ga_data, objmembers.ga_len); ga_clear_strings(&lines_to_free); if (uf != NULL) { char_u *name = uf->uf_name; int is_new = STRNCMP(name, "new", 3) == 0; if (!is_class && *name == '_') { // private variables are not supported in an interface semsg(_(e_private_method_not_supported_in_interface), name); func_clear_free(uf, FALSE); break; } if (is_new && !is_valid_constructor(uf, is_abstract, has_static)) { func_clear_free(uf, FALSE); break; } // Check the name isn't used already. if (is_duplicate_method(&classfunctions, &objmethods, name)) { success = FALSE; func_clear_free(uf, FALSE); break; } garray_T *fgap = has_static || is_new ? &classfunctions : &objmethods; if (ga_grow(fgap, 1) == OK) { if (is_new) uf->uf_flags |= FC_NEW; if (abstract_method) uf->uf_flags |= FC_ABSTRACT; ((ufunc_T **)fgap->ga_data)[fgap->ga_len] = uf; ++fgap->ga_len; } } } // class members else if (has_static) { // class members (public, read access, private): // "static _varname" // "static varname" // "public static varname" char_u *varname = p; char_u *varname_end = NULL; int has_type = FALSE; type_T *type = NULL; char_u *init_expr = NULL; if (parse_member(eap, line, varname, has_public, &varname_end, &has_type, &type_list, &type, is_class ? &init_expr : NULL) == FAIL) break; if (is_reserved_varname(varname, varname_end)) { vim_free(init_expr); break; } if (is_duplicate_variable(&classmembers, &objmembers, varname, varname_end)) { vim_free(init_expr); break; } if (add_member(&classmembers, varname, varname_end, has_public, has_type, type, init_expr) == FAIL) { vim_free(init_expr); break; } } else { if (is_class) semsg(_(e_not_valid_command_in_class_str), line); else semsg(_(e_not_valid_command_in_interface_str), line); break; } } vim_free(theline); class_T *extends_cl = NULL; // class from "extends" argument /* * Check a few things before defining the class. */ // Check the "extends" class is valid. if (success && extends != NULL) success = validate_extends_class(extends, &extends_cl, is_class); VIM_CLEAR(extends); // Check the new object methods to make sure their access (public or // private) is the same as that in the extended class lineage. if (success && extends_cl != NULL) success = validate_extends_methods(&objmethods, extends_cl); // Check the new class and object variables are not duplicates of the // variables in the extended class lineage. If an interface is extending // another interface, then it can duplicate the member variables. if (success && extends_cl != NULL) { if (is_class) success = extends_check_dup_members(&objmembers, extends_cl); else success = extends_check_intf_var_type(&objmembers, extends_cl); } // When extending an abstract class, make sure all the abstract methods in // the parent class are implemented. If the current class is an abstract // class, then there is no need for this check. if (success && !is_abstract && extends_cl != NULL && (extends_cl->class_flags & CLASS_ABSTRACT)) success = validate_abstract_class_methods(&classfunctions, &objmethods, extends_cl); class_T **intf_classes = NULL; // Check all "implements" entries are valid. if (success && ga_impl.ga_len > 0) { intf_classes = ALLOC_CLEAR_MULT(class_T *, ga_impl.ga_len); success = validate_implements_classes(&ga_impl, intf_classes, &objmethods, &objmembers, extends_cl); } // Check no function argument name is used as a class member. if (success) success = check_func_arg_names(&classfunctions, &objmethods, &classmembers); class_T *cl = NULL; if (success) { // "endclass" encountered without failures: Create the class. cl = ALLOC_CLEAR_ONE(class_T); if (cl == NULL) goto cleanup; if (!is_class) cl->class_flags = CLASS_INTERFACE; else if (is_abstract) cl->class_flags = CLASS_ABSTRACT; cl->class_refcount = 1; cl->class_name = vim_strnsave(name_start, name_end - name_start); if (cl->class_name == NULL) goto cleanup; if (extends_cl != NULL) { cl->class_extends = extends_cl; extends_cl->class_flags |= CLASS_EXTENDED; } // Add class and object variables to "cl". if (add_members_to_class(&classmembers, NULL, 0, &cl->class_class_members, &cl->class_class_member_count) == FAIL || add_members_to_class(&objmembers, extends_cl == NULL ? NULL : extends_cl->class_obj_members, extends_cl == NULL ? 0 : extends_cl->class_obj_member_count, &cl->class_obj_members, &cl->class_obj_member_count) == FAIL) goto cleanup; if (ga_impl.ga_len > 0) { // Move the "implements" names into the class. cl->class_interface_count = ga_impl.ga_len; cl->class_interfaces = ALLOC_MULT(char_u *, ga_impl.ga_len); if (cl->class_interfaces == NULL) goto cleanup; for (int i = 0; i < ga_impl.ga_len; ++i) cl->class_interfaces[i] = ((char_u **)ga_impl.ga_data)[i]; VIM_CLEAR(ga_impl.ga_data); ga_impl.ga_len = 0; cl->class_interfaces_cl = intf_classes; intf_classes = NULL; } if (cl->class_interface_count > 0 || extends_cl != NULL) { // Add a method and member lookup table to each of the interface // classes. if (add_lookup_tables(cl, extends_cl, &objmethods) == FAIL) goto cleanup; } // Allocate a typval for each class member and initialize it. if (is_class && cl->class_class_member_count > 0) add_class_members(cl, eap, &type_list); int have_new = FALSE; ufunc_T *class_func = NULL; for (int i = 0; i < classfunctions.ga_len; ++i) { class_func = ((ufunc_T **)classfunctions.ga_data)[i]; if (STRCMP(class_func->uf_name, "new") == 0) { have_new = TRUE; break; } } if (have_new) // The return type of new() is an object of class "cl" class_func->uf_ret_type->tt_class = cl; else if (is_class && !is_abstract && !have_new) // No new() method was defined, add the default constructor. add_default_constructor(cl, &classfunctions, &type_list); // Move all the functions into the created class. if (add_classfuncs_objmethods(cl, extends_cl, &classfunctions, &objmethods) == FAIL) goto cleanup; cl->class_type.tt_type = VAR_CLASS; cl->class_type.tt_class = cl; cl->class_object_type.tt_type = VAR_OBJECT; cl->class_object_type.tt_class = cl; cl->class_type_list = type_list; class_created(cl); // TODO: // - Fill hashtab with object members and methods ? // Add the class to the script-local variables. // TODO: handle other context, e.g. in a function // TODO: does uf_hash need to be cleared? typval_T tv; tv.v_type = VAR_CLASS; tv.vval.v_class = cl; is_export = class_export; SOURCING_LNUM = start_lnum; set_var_const(cl->class_name, current_sctx.sc_sid, NULL, &tv, FALSE, 0, 0); return; } cleanup: if (cl != NULL) { vim_free(cl->class_name); vim_free(cl->class_class_functions); if (cl->class_interfaces != NULL) { for (int i = 0; i < cl->class_interface_count; ++i) vim_free(cl->class_interfaces[i]); vim_free(cl->class_interfaces); } if (cl->class_interfaces_cl != NULL) { for (int i = 0; i < cl->class_interface_count; ++i) class_unref(cl->class_interfaces_cl[i]); vim_free(cl->class_interfaces_cl); } vim_free(cl->class_obj_members); vim_free(cl->class_obj_methods); vim_free(cl); } vim_free(extends); class_unref(extends_cl); if (intf_classes != NULL) { for (int i = 0; i < ga_impl.ga_len; ++i) class_unref(intf_classes[i]); vim_free(intf_classes); } ga_clear_strings(&ga_impl); for (int round = 1; round <= 2; ++round) { garray_T *gap = round == 1 ? &classmembers : &objmembers; if (gap->ga_len == 0 || gap->ga_data == NULL) continue; for (int i = 0; i < gap->ga_len; ++i) { ocmember_T *m = ((ocmember_T *)gap->ga_data) + i; vim_free(m->ocm_name); vim_free(m->ocm_init); } ga_clear(gap); } for (int i = 0; i < objmethods.ga_len; ++i) { ufunc_T *uf = ((ufunc_T **)objmethods.ga_data)[i]; func_clear_free(uf, FALSE); } ga_clear(&objmethods); for (int i = 0; i < classfunctions.ga_len; ++i) { ufunc_T *uf = ((ufunc_T **)classfunctions.ga_data)[i]; func_clear_free(uf, FALSE); } ga_clear(&classfunctions); clear_type_list(&type_list); } /* * Find member "name" in class "cl", set "member_idx" to the member index and * return its type. * When "is_object" is TRUE, then look for object members. Otherwise look for * class members. * When not found "member_idx" is set to -1 and t_any is returned. * Set *p_m ocmmember_T if not NULL */ type_T * oc_member_type( class_T *cl, int is_object, char_u *name, char_u *name_end, int *member_idx) { size_t len = name_end - name; ocmember_T *m; *member_idx = -1; // not found (yet) m = member_lookup(cl, is_object ? VAR_OBJECT : VAR_CLASS, name, len, member_idx); if (m == NULL) { member_not_found_msg(cl, is_object ? VAR_OBJECT : VAR_CLASS, name, len); return &t_any; } return m->ocm_type; } /* * Given a class or object variable index, return the variable type */ type_T * oc_member_type_by_idx( class_T *cl, int is_object, int member_idx) { ocmember_T *m; int member_count; if (is_object) { m = cl->class_obj_members; member_count = cl->class_obj_member_count; } else { m = cl->class_class_members; member_count = cl->class_class_member_count; } if (member_idx >= member_count) return NULL; return m[member_idx].ocm_type; } /* * Handle ":enum" up to ":endenum". */ void ex_enum(exarg_T *eap UNUSED) { // TODO } /* * Handle ":type". */ void ex_type(exarg_T *eap UNUSED) { // TODO } /* * Returns OK if a member variable named "name" is present in the class "cl". * Otherwise returns FAIL. If found, the member variable typval is set in * "rettv". If "is_object" is TRUE, then the object member variable table is * searched. Otherwise the class member variable table is searched. */ static int get_member_tv( class_T *cl, int is_object, char_u *name, size_t namelen, typval_T *rettv) { ocmember_T *m; int m_idx; m = member_lookup(cl, is_object ? VAR_OBJECT : VAR_CLASS, name, namelen, &m_idx); if (m == NULL) return FAIL; if (*name == '_') { emsg_var_cl_define(e_cannot_access_private_variable_str, m->ocm_name, 0, cl); return FAIL; } if (is_object) { // The object only contains a pointer to the class, the member values // array follows right after that. object_T *obj = rettv->vval.v_object; typval_T *tv = (typval_T *)(obj + 1) + m_idx; copy_tv(tv, rettv); object_unref(obj); } else { copy_tv(&cl->class_members_tv[m_idx], rettv); class_unref(cl); } return OK; } /* * Call an object or class method "name" in class "cl". The method return * value is returned in "rettv". */ static int call_oc_method( class_T *cl, char_u *name, size_t len, char_u *name_end, evalarg_T *evalarg, char_u **arg, typval_T *rettv) { ufunc_T *fp; typval_T argvars[MAX_FUNC_ARGS + 1]; int argcount = 0; ocmember_T *ocm = NULL; int m_idx; fp = method_lookup(cl, rettv->v_type, name, len, NULL); if (fp == NULL) { // could be an object or class funcref variable ocm = member_lookup(cl, rettv->v_type, name, len, &m_idx); if (ocm == NULL || ocm->ocm_type->tt_type != VAR_FUNC) { method_not_found_msg(cl, rettv->v_type, name, len); return FAIL; } if (rettv->v_type == VAR_OBJECT) { // funcref object variable object_T *obj = rettv->vval.v_object; typval_T *tv = (typval_T *)(obj + 1) + m_idx; copy_tv(tv, rettv); } else // funcref class variable copy_tv(&cl->class_members_tv[m_idx], rettv); *arg = name_end; return OK; } if (ocm == NULL && *fp->uf_name == '_') { // Cannot access a private method outside of a class semsg(_(e_cannot_access_private_method_str), fp->uf_name); return FAIL; } char_u *argp = name_end; int ret = get_func_arguments(&argp, evalarg, 0, argvars, &argcount); if (ret == FAIL) return FAIL; funcexe_T funcexe; CLEAR_FIELD(funcexe); funcexe.fe_evaluate = TRUE; if (rettv->v_type == VAR_OBJECT) { funcexe.fe_object = rettv->vval.v_object; ++funcexe.fe_object->obj_refcount; } // Clear the class or object after calling the function, in // case the refcount is one. typval_T tv_tofree = *rettv; rettv->v_type = VAR_UNKNOWN; // Call the user function. Result goes into rettv; int error = call_user_func_check(fp, argcount, argvars, rettv, &funcexe, NULL); // Clear the previous rettv and the arguments. clear_tv(&tv_tofree); for (int idx = 0; idx < argcount; ++idx) clear_tv(&argvars[idx]); if (error != FCERR_NONE) { user_func_error(error, printable_func_name(fp), funcexe.fe_found_var); return FAIL; } *arg = argp; return OK; } /* * Evaluate what comes after a class: * - class member: SomeClass.varname * - class function: SomeClass.SomeMethod() * - class constructor: SomeClass.new() * - object member: someObject.varname * - object method: someObject.SomeMethod() * * "*arg" points to the '.'. * "*arg" is advanced to after the member name or method call. * * Returns FAIL or OK. */ int class_object_index( char_u **arg, typval_T *rettv, evalarg_T *evalarg, int verbose UNUSED) // give error messages { if (VIM_ISWHITE((*arg)[1])) { semsg(_(e_no_white_space_allowed_after_str_str), ".", *arg); return FAIL; } ++*arg; char_u *name = *arg; char_u *name_end = find_name_end(name, NULL, NULL, FNE_CHECK_START); if (name_end == name) return FAIL; size_t len = name_end - name; int did_emsg_save = did_emsg; class_T *cl; if (rettv->v_type == VAR_CLASS) cl = rettv->vval.v_class; else // VAR_OBJECT { if (rettv->vval.v_object == NULL) { emsg(_(e_using_null_object)); return FAIL; } cl = rettv->vval.v_object->obj_class; } if (cl == NULL) { emsg(_(e_incomplete_type)); return FAIL; } if (*name_end == '(') // Invoke the class or object method return call_oc_method(cl, name, len, name_end, evalarg, arg, rettv); else if (rettv->v_type == VAR_OBJECT || rettv->v_type == VAR_CLASS) { // Search in the object member variable table and the class member // variable table. int is_object = rettv->v_type == VAR_OBJECT; if (get_member_tv(cl, is_object, name, len, rettv) == OK) { *arg = name_end; return OK; } // could be a class method or an object method int fidx; ufunc_T *fp = method_lookup(cl, rettv->v_type, name, len, &fidx); if (fp != NULL) { // Private methods are not accessible outside the class if (*name == '_') { semsg(_(e_cannot_access_private_method_str), fp->uf_name); return FAIL; } partial_T *pt = ALLOC_CLEAR_ONE(partial_T); if (pt == NULL) return FAIL; pt->pt_refcount = 1; if (is_object) { pt->pt_obj = rettv->vval.v_object; ++pt->pt_obj->obj_refcount; } pt->pt_auto = TRUE; pt->pt_func = fp; func_ptr_ref(pt->pt_func); rettv->v_type = VAR_PARTIAL; rettv->vval.v_partial = pt; *arg = name_end; return OK; } if (did_emsg == did_emsg_save) member_not_found_msg(cl, is_object ? VAR_OBJECT : VAR_CLASS, name, len); } return FAIL; } /* * If "arg" points to a class or object method, return it. * Otherwise return NULL. */ ufunc_T * find_class_func(char_u **arg) { char_u *name = *arg; char_u *name_end = find_name_end(name, NULL, NULL, FNE_CHECK_START); if (name_end == name || *name_end != '.') return NULL; ufunc_T *fp = NULL; size_t len = name_end - name; typval_T tv; tv.v_type = VAR_UNKNOWN; if (eval_variable(name, (int)len, 0, &tv, NULL, EVAL_VAR_NOAUTOLOAD) == FAIL) return NULL; if (tv.v_type != VAR_CLASS && tv.v_type != VAR_OBJECT) goto fail_after_eval; class_T *cl = tv.v_type == VAR_CLASS ? tv.vval.v_class : tv.vval.v_object->obj_class; if (cl == NULL) goto fail_after_eval; char_u *fname = name_end + 1; char_u *fname_end = find_name_end(fname, NULL, NULL, FNE_CHECK_START); if (fname_end == fname) goto fail_after_eval; len = fname_end - fname; fp = method_lookup(cl, tv.v_type, fname, len, NULL); fail_after_eval: clear_tv(&tv); return fp; } /* * Returns the index of class variable "name" in the class "cl". * Returns -1, if the variable is not found. * If "namelen" is zero, then it is assumed that "name" is NUL terminated. */ int class_member_idx(class_T *cl, char_u *name, size_t namelen) { int idx; class_member_lookup(cl, name, namelen, &idx); return idx; } /* * Returns a pointer to the class member variable "name" in the class "cl". * Returns NULL if the variable is not found. * The member variable index is set in "idx". */ ocmember_T * class_member_lookup(class_T *cl, char_u *name, size_t namelen, int *idx) { ocmember_T *ret_m = NULL; int ret_idx = -1; for (int i = 0; i < cl->class_class_member_count; ++i) { ocmember_T *m = &cl->class_class_members[i]; if (namelen) { if (STRNCMP(name, m->ocm_name, namelen) == 0 && m->ocm_name[namelen] == NUL) { ret_m = m; ret_idx = i; break; } } else if (STRCMP(name, m->ocm_name) == 0) { ret_m = m; ret_idx = i; break; } } if (idx != NULL) *idx = ret_idx; return ret_m; } /* * Returns a pointer to the class method "name" in class "cl". * Returns NULL if the method is not found. * The method index is set in "idx". */ static ufunc_T * class_method_lookup(class_T *cl, char_u *name, size_t namelen, int *idx) { ufunc_T *ret_fp = NULL; int ret_idx = -1; for (int i = 0; i < cl->class_class_function_count; ++i) { ufunc_T *fp = cl->class_class_functions[i]; char_u *ufname = (char_u *)fp->uf_name; if (STRNCMP(name, ufname, namelen) == 0 && ufname[namelen] == NUL) { ret_fp = fp; ret_idx = i; break; } } if (idx != NULL) *idx = ret_idx; return ret_fp; } /* * Returns the index of class method "name" in the class "cl". * Returns -1, if the method is not found. */ int class_method_idx(class_T *cl, char_u *name, size_t namelen) { int idx; class_method_lookup(cl, name, namelen, &idx); return idx; } /* * Returns the index of object member variable "name" in the class "cl". * Returns -1, if the variable is not found. * If "namelen" is zero, then it is assumed that "name" is NUL terminated. */ static int object_member_idx(class_T *cl, char_u *name, size_t namelen) { int idx; object_member_lookup(cl, name, namelen, &idx); return idx; } /* * Returns a pointer to the object member variable "name" in the class "cl". * Returns NULL if the variable is not found. * The object member variable index is set in "idx". */ ocmember_T * object_member_lookup(class_T *cl, char_u *name, size_t namelen, int *idx) { ocmember_T *ret_m = NULL; int ret_idx = -1; for (int i = 0; i < cl->class_obj_member_count; ++i) { ocmember_T *m = &cl->class_obj_members[i]; if (namelen) { if (STRNCMP(name, m->ocm_name, namelen) == 0 && m->ocm_name[namelen] == NUL) { ret_m = m; ret_idx = i; break; } } else if (STRCMP(name, m->ocm_name) == 0) { ret_m = m; ret_idx = i; break; } } if (idx != NULL) *idx = ret_idx; return ret_m; } /* * Returns a pointer to the object method "name" in class "cl". * Returns NULL if the method is not found. * The object method index is set in "idx". */ static ufunc_T * object_method_lookup(class_T *cl, char_u *name, size_t namelen, int *idx) { ufunc_T *ret_fp = NULL; int ret_idx = -1; for (int i = 0; i < cl->class_obj_method_count; ++i) { ufunc_T *fp = cl->class_obj_methods[i]; // Use a separate pointer to avoid that ASAN complains about // uf_name[] only being 4 characters. char_u *ufname = (char_u *)fp->uf_name; if (STRNCMP(name, ufname, namelen) == 0 && ufname[namelen] == NUL) { ret_fp = fp; ret_idx = i; break; } } if (idx != NULL) *idx = ret_idx; return ret_fp; } /* * Returns the index of object method "name" in the class "cl". * Returns -1, if the method is not found. */ int object_method_idx(class_T *cl, char_u *name, size_t namelen) { int idx; object_method_lookup(cl, name, namelen, &idx); return idx; } /* * Lookup a class or object member variable by name. If v_type is VAR_CLASS, * then lookup a class member variable and if it is VAR_OBJECT, then lookup a * object member variable. * * Returns a pointer to the member variable structure if variable is found. * Otherwise returns NULL. The member variable index is set in "*idx". */ ocmember_T * member_lookup( class_T *cl, vartype_T v_type, char_u *name, size_t namelen, int *idx) { if (v_type == VAR_CLASS) return class_member_lookup(cl, name, namelen, idx); else return object_member_lookup(cl, name, namelen, idx); } /* * Find the class that defines the named member. Look up the hierarchy * starting at "cl". * * Return the class that defines the member "name", else NULL. * Fill in "p_m", if specified, for ocmember_T in found class. */ // NOTE: if useful for something could also indirectly return vartype and idx. static class_T * class_defining_member(class_T *cl, char_u *name, size_t len, ocmember_T **p_m) { class_T *cl_found = NULL; vartype_T vartype = VAR_UNKNOWN; ocmember_T *m_found = NULL; len = len != 0 ? len : STRLEN(name); // Loop assumes if member is not defined in "cl", then it is not // defined in any super class; the last class where it's found is the // class where it is defined. Once the vartype is found, the other // type is no longer checked. for (class_T *super = cl; super != NULL; super = super->class_extends) { class_T *cl_tmp = NULL; ocmember_T *m = NULL; if (vartype == VAR_UNKNOWN || vartype == VAR_OBJECT) { if ((m = object_member_lookup(super, name, len, NULL)) != NULL) { cl_tmp = super; vartype = VAR_OBJECT; } } if (vartype == VAR_UNKNOWN || vartype == VAR_CLASS) { if (( m = class_member_lookup(super, name, len, NULL)) != NULL) { cl_tmp = super; vartype = VAR_OBJECT; } } if (cl_tmp == NULL) break; // member is not in this or any super class. cl_found = cl_tmp; m_found = m; } if (p_m != NULL) *p_m = m_found; return cl_found; } /* * Lookup a class or object method by name. If v_type is VAR_CLASS, then * lookup a class method and if it is VAR_OBJECT, then lookup a object method. * * Returns a pointer to the method structure if variable is found. * Otherwise returns NULL. The method variable index is set in "*idx". */ ufunc_T * method_lookup( class_T *cl, vartype_T v_type, char_u *name, size_t namelen, int *idx) { if (v_type == VAR_CLASS) return class_method_lookup(cl, name, namelen, idx); else return object_method_lookup(cl, name, namelen, idx); } /* * Return TRUE if current context "cctx_arg" is inside class "cl". * Return FALSE if not. */ int inside_class(cctx_T *cctx_arg, class_T *cl) { for (cctx_T *cctx = cctx_arg; cctx != NULL; cctx = cctx->ctx_outer) if (cctx->ctx_ufunc != NULL && class_instance_of(cctx->ctx_ufunc->uf_class, cl)) return TRUE; return FALSE; } /* * Make a copy of an object. */ void copy_object(typval_T *from, typval_T *to) { if (from->vval.v_object == NULL) to->vval.v_object = NULL; else { to->vval.v_object = from->vval.v_object; ++to->vval.v_object->obj_refcount; } } /* * Make a copy of a class. */ void copy_class(typval_T *from, typval_T *to) { if (from->vval.v_class == NULL) to->vval.v_class = NULL; else { to->vval.v_class = from->vval.v_class; ++to->vval.v_class->class_refcount; } } /* * Free the class "cl" and its contents. */ static void class_free(class_T *cl) { // Freeing what the class contains may recursively come back here. // Clear "class_name" first, if it is NULL the class does not need to // be freed. VIM_CLEAR(cl->class_name); class_unref(cl->class_extends); for (int i = 0; i < cl->class_interface_count; ++i) { vim_free(((char_u **)cl->class_interfaces)[i]); if (cl->class_interfaces_cl[i] != NULL) class_unref(cl->class_interfaces_cl[i]); } vim_free(cl->class_interfaces); vim_free(cl->class_interfaces_cl); itf2class_T *next; for (itf2class_T *i2c = cl->class_itf2class; i2c != NULL; i2c = next) { next = i2c->i2c_next; vim_free(i2c); } for (int i = 0; i < cl->class_class_member_count; ++i) { ocmember_T *m = &cl->class_class_members[i]; vim_free(m->ocm_name); vim_free(m->ocm_init); if (cl->class_members_tv != NULL) clear_tv(&cl->class_members_tv[i]); } vim_free(cl->class_class_members); vim_free(cl->class_members_tv); for (int i = 0; i < cl->class_obj_member_count; ++i) { ocmember_T *m = &cl->class_obj_members[i]; vim_free(m->ocm_name); vim_free(m->ocm_init); } vim_free(cl->class_obj_members); for (int i = 0; i < cl->class_class_function_count; ++i) { ufunc_T *uf = cl->class_class_functions[i]; func_clear_free(uf, FALSE); } vim_free(cl->class_class_functions); for (int i = 0; i < cl->class_obj_method_count; ++i) { ufunc_T *uf = cl->class_obj_methods[i]; func_clear_free(uf, FALSE); } vim_free(cl->class_obj_methods); clear_type_list(&cl->class_type_list); class_cleared(cl); vim_free(cl); } /* * Unreference a class. Free it when the reference count goes down to zero. */ void class_unref(class_T *cl) { if (cl != NULL && --cl->class_refcount <= 0 && cl->class_name != NULL) class_free(cl); } /* * Go through the list of all classes and free items without "copyID". */ int class_free_nonref(int copyID) { int did_free = FALSE; for (class_T *cl = first_class; cl != NULL; cl = next_nonref_class) { next_nonref_class = cl->class_next_used; if ((cl->class_copyID & COPYID_MASK) != (copyID & COPYID_MASK)) { // Free the class and items it contains. class_free(cl); did_free = TRUE; } } next_nonref_class = NULL; return did_free; } int set_ref_in_classes(int copyID) { for (class_T *cl = first_class; cl != NULL; cl = cl->class_next_used) set_ref_in_item_class(cl, copyID, NULL, NULL); return FALSE; } static object_T *first_object = NULL; /* * Call this function when an object has been created. It will be added to the * list headed by "first_object". */ void object_created(object_T *obj) { if (first_object != NULL) { obj->obj_next_used = first_object; first_object->obj_prev_used = obj; } first_object = obj; } /* * Call this function when an object has been cleared and is about to be freed. * It is removed from the list headed by "first_object". */ static void object_cleared(object_T *obj) { if (obj->obj_next_used != NULL) obj->obj_next_used->obj_prev_used = obj->obj_prev_used; if (obj->obj_prev_used != NULL) obj->obj_prev_used->obj_next_used = obj->obj_next_used; else if (first_object == obj) first_object = obj->obj_next_used; } /* * Free the contents of an object ignoring the reference count. */ static void object_free_contents(object_T *obj) { class_T *cl = obj->obj_class; if (!cl) return; // Avoid a recursive call, it can happen if "obj" has a circular reference. obj->obj_refcount = INT_MAX; // the member values are just after the object structure typval_T *tv = (typval_T *)(obj + 1); for (int i = 0; i < cl->class_obj_member_count; ++i) clear_tv(tv + i); } static void object_free_object(object_T *obj) { class_T *cl = obj->obj_class; if (!cl) return; // Remove from the list headed by "first_object". object_cleared(obj); vim_free(obj); class_unref(cl); } static void object_free(object_T *obj) { if (in_free_unref_items) return; object_free_contents(obj); object_free_object(obj); } /* * Unreference an object. */ void object_unref(object_T *obj) { if (obj != NULL && --obj->obj_refcount <= 0) object_free(obj); } /* * Go through the list of all objects and free items without "copyID". */ int object_free_nonref(int copyID) { int did_free = FALSE; for (object_T *obj = first_object; obj != NULL; obj = obj->obj_next_used) { if ((obj->obj_copyID & COPYID_MASK) != (copyID & COPYID_MASK)) { // Free the object contents. Object itself will be freed later. object_free_contents(obj); did_free = TRUE; } } return did_free; } void object_free_items(int copyID) { object_T *obj_next; for (object_T *obj = first_object; obj != NULL; obj = obj_next) { obj_next = obj->obj_next_used; if ((obj->obj_copyID & COPYID_MASK) != (copyID & COPYID_MASK)) object_free_object(obj); } } /* * Output message which takes a variable name and the class that defines it. * "cl" is that class where the name was found. Search "cl"'s hierarchy to * find the defining class. */ void emsg_var_cl_define(char *msg, char_u *name, size_t len, class_T *cl) { ocmember_T *m; class_T *cl_def = class_defining_member(cl, name, len, &m); if (cl_def != NULL) semsg(_(msg), m->ocm_name, cl_def->class_name); else emsg(_(e_internal_error_please_report_a_bug)); } /* * Echo a class or object method not found message. */ void method_not_found_msg(class_T *cl, vartype_T v_type, char_u *name, size_t len) { char_u *method_name = vim_strnsave(name, len); if ((v_type == VAR_OBJECT) && (class_method_idx(cl, name, len) >= 0)) { // If this is a class method, then give a different error if (*name == '_') semsg(_(e_cannot_access_private_method_str), method_name); else semsg(_(e_class_method_str_accessible_only_using_class_str), method_name, cl->class_name); } else if ((v_type == VAR_CLASS) && (object_method_idx(cl, name, len) >= 0)) { // If this is an object method, then give a different error if (*name == '_') semsg(_(e_cannot_access_private_method_str), method_name); else semsg(_(e_object_method_str_accessible_only_using_object_str), method_name, cl->class_name); } else semsg(_(e_method_not_found_on_class_str_str), cl->class_name, method_name); vim_free(method_name); } /* * Echo a class or object member not found message. */ void member_not_found_msg(class_T *cl, vartype_T v_type, char_u *name, size_t len) { char_u *varname = len ? vim_strnsave(name, len) : vim_strsave(name); if (v_type == VAR_OBJECT) { if (class_member_idx(cl, name, len) >= 0) semsg(_(e_class_variable_str_accessible_only_using_class_str), varname, cl->class_name); else semsg(_(e_variable_not_found_on_object_str_str), cl->class_name, varname); } else { if (object_member_idx(cl, name, len) >= 0) semsg(_(e_object_variable_str_accessible_only_using_object_str), varname, cl->class_name); else semsg(_(e_class_variable_str_not_found_in_class_str), varname, cl->class_name); } vim_free(varname); } /* * Return TRUE when the class "cl", its base class or one of the implemented * interfaces matches the class "other_cl". */ int class_instance_of(class_T *cl, class_T *other_cl) { if (cl == other_cl) return TRUE; // Recursively check the base classes. for (; cl != NULL; cl = cl->class_extends) { if (cl == other_cl) return TRUE; // Check the implemented interfaces and the super interfaces for (int i = cl->class_interface_count - 1; i >= 0; --i) { class_T *intf = cl->class_interfaces_cl[i]; while (intf != NULL) { if (intf == other_cl) return TRUE; // check the super interfaces intf = intf->class_extends; } } } return FALSE; } /* * "instanceof(object, classinfo)" function */ void f_instanceof(typval_T *argvars, typval_T *rettv) { typval_T *object_tv = &argvars[0]; typval_T *classinfo_tv = &argvars[1]; listitem_T *li; rettv->vval.v_number = VVAL_FALSE; if (check_for_object_arg(argvars, 0) == FAIL || check_for_class_or_list_arg(argvars, 1) == FAIL) return; if (object_tv->vval.v_object == NULL) return; if (classinfo_tv->v_type == VAR_LIST) { FOR_ALL_LIST_ITEMS(classinfo_tv->vval.v_list, li) { if (li->li_tv.v_type != VAR_CLASS) { emsg(_(e_class_required)); return; } if (class_instance_of(object_tv->vval.v_object->obj_class, li->li_tv.vval.v_class) == TRUE) { rettv->vval.v_number = VVAL_TRUE; return; } } } else if (classinfo_tv->v_type == VAR_CLASS) { rettv->vval.v_number = class_instance_of(object_tv->vval.v_object->obj_class, classinfo_tv->vval.v_class); } } #endif // FEAT_EVAL