Mercurial > vim
view src/regexp_bt.c @ 33096:828bcb1a37e7 v9.0.1833
patch 9.0.1833: [security] runtime file fixes
Commit: https://github.com/vim/vim/commit/816fbcc262687b81fc46f82f7bbeb1453addfe0c
Author: Christian Brabandt <cb@256bit.org>
Date: Thu Aug 31 23:52:30 2023 +0200
patch 9.0.1833: [security] runtime file fixes
Problem: runtime files may execute code in current dir
Solution: only execute, if not run from current directory
The perl, zig and ruby filetype plugins and the zip and gzip autoload
plugins may try to load malicious executable files from the current
working directory. This is especially a problem on windows, where the
current directory is implicitly in your $PATH and windows may even run a
file with the extension `.bat` because of $PATHEXT.
So make sure that we are not trying to execute a file from the current
directory. If this would be the case, error out (for the zip and gzip)
plugins or silently do not run those commands (for the ftplugins).
This assumes, that only the current working directory is bad. For all
other directories, it is assumed that those directories were
intentionally set to the $PATH by the user.
Signed-off-by: Christian Brabandt <cb@256bit.org>
author | Christian Brabandt <cb@256bit.org> |
---|---|
date | Fri, 01 Sep 2023 00:00:02 +0200 |
parents | d415dfae6977 |
children | 90063f44c99a |
line wrap: on
line source
/* vi:set ts=8 sts=4 sw=4 noet: * * Backtracking regular expression implementation. * * This file is included in "regexp.c". * * NOTICE: * * This is NOT the original regular expression code as written by Henry * Spencer. This code has been modified specifically for use with the VIM * editor, and should not be used separately from Vim. If you want a good * regular expression library, get the original code. The copyright notice * that follows is from the original. * * END NOTICE * * Copyright (c) 1986 by University of Toronto. * Written by Henry Spencer. Not derived from licensed software. * * Permission is granted to anyone to use this software for any * purpose on any computer system, and to redistribute it freely, * subject to the following restrictions: * * 1. The author is not responsible for the consequences of use of * this software, no matter how awful, even if they arise * from defects in it. * * 2. The origin of this software must not be misrepresented, either * by explicit claim or by omission. * * 3. Altered versions must be plainly marked as such, and must not * be misrepresented as being the original software. * * Beware that some of this code is subtly aware of the way operator * precedence is structured in regular expressions. Serious changes in * regular-expression syntax might require a total rethink. * * Changes have been made by Tony Andrews, Olaf 'Rhialto' Seibert, Robert * Webb, Ciaran McCreesh and Bram Moolenaar. * Named character class support added by Walter Briscoe (1998 Jul 01) */ /* * The "internal use only" fields in regexp.h are present to pass info from * compile to execute that permits the execute phase to run lots faster on * simple cases. They are: * * regstart char that must begin a match; NUL if none obvious; Can be a * multi-byte character. * reganch is the match anchored (at beginning-of-line only)? * regmust string (pointer into program) that match must include, or NULL * regmlen length of regmust string * regflags RF_ values or'ed together * * Regstart and reganch permit very fast decisions on suitable starting points * for a match, cutting down the work a lot. Regmust permits fast rejection * of lines that cannot possibly match. The regmust tests are costly enough * that vim_regcomp() supplies a regmust only if the r.e. contains something * potentially expensive (at present, the only such thing detected is * or + * at the start of the r.e., which can involve a lot of backup). Regmlen is * supplied because the test in vim_regexec() needs it and vim_regcomp() is * computing it anyway. */ /* * Structure for regexp "program". This is essentially a linear encoding * of a nondeterministic finite-state machine (aka syntax charts or * "railroad normal form" in parsing technology). Each node is an opcode * plus a "next" pointer, possibly plus an operand. "Next" pointers of * all nodes except BRANCH and BRACES_COMPLEX implement concatenation; a "next" * pointer with a BRANCH on both ends of it is connecting two alternatives. * (Here we have one of the subtle syntax dependencies: an individual BRANCH * (as opposed to a collection of them) is never concatenated with anything * because of operator precedence). The "next" pointer of a BRACES_COMPLEX * node points to the node after the stuff to be repeated. * The operand of some types of node is a literal string; for others, it is a * node leading into a sub-FSM. In particular, the operand of a BRANCH node * is the first node of the branch. * (NB this is *not* a tree structure: the tail of the branch connects to the * thing following the set of BRANCHes.) * * pattern is coded like: * * +-----------------+ * | V * <aa>\|<bb> BRANCH <aa> BRANCH <bb> --> END * | ^ | ^ * +------+ +----------+ * * * +------------------+ * V | * <aa>* BRANCH BRANCH <aa> --> BACK BRANCH --> NOTHING --> END * | | ^ ^ * | +---------------+ | * +---------------------------------------------+ * * * +----------------------+ * V | * <aa>\+ BRANCH <aa> --> BRANCH --> BACK BRANCH --> NOTHING --> END * | | ^ ^ * | +-----------+ | * +--------------------------------------------------+ * * * +-------------------------+ * V | * <aa>\{} BRANCH BRACE_LIMITS --> BRACE_COMPLEX <aa> --> BACK END * | | ^ * | +----------------+ * +-----------------------------------------------+ * * * <aa>\@!<bb> BRANCH NOMATCH <aa> --> END <bb> --> END * | | ^ ^ * | +----------------+ | * +--------------------------------+ * * +---------+ * | V * \z[abc] BRANCH BRANCH a BRANCH b BRANCH c BRANCH NOTHING --> END * | | | | ^ ^ * | | | +-----+ | * | | +----------------+ | * | +---------------------------+ | * +------------------------------------------------------+ * * They all start with a BRANCH for "\|" alternatives, even when there is only * one alternative. */ /* * The opcodes are: */ // definition number opnd? meaning #define END 0 // End of program or NOMATCH operand. #define BOL 1 // Match "" at beginning of line. #define EOL 2 // Match "" at end of line. #define BRANCH 3 // node Match this alternative, or the // next... #define BACK 4 // Match "", "next" ptr points backward. #define EXACTLY 5 // str Match this string. #define NOTHING 6 // Match empty string. #define STAR 7 // node Match this (simple) thing 0 or more // times. #define PLUS 8 // node Match this (simple) thing 1 or more // times. #define MATCH 9 // node match the operand zero-width #define NOMATCH 10 // node check for no match with operand #define BEHIND 11 // node look behind for a match with operand #define NOBEHIND 12 // node look behind for no match with operand #define SUBPAT 13 // node match the operand here #define BRACE_SIMPLE 14 // node Match this (simple) thing between m and // n times (\{m,n\}). #define BOW 15 // Match "" after [^a-zA-Z0-9_] #define EOW 16 // Match "" at [^a-zA-Z0-9_] #define BRACE_LIMITS 17 // nr nr define the min & max for BRACE_SIMPLE // and BRACE_COMPLEX. #define NEWL 18 // Match line-break #define BHPOS 19 // End position for BEHIND or NOBEHIND // character classes: 20-48 normal, 50-78 include a line-break #define ADD_NL 30 #define FIRST_NL ANY + ADD_NL #define ANY 20 // Match any one character. #define ANYOF 21 // str Match any character in this string. #define ANYBUT 22 // str Match any character not in this // string. #define IDENT 23 // Match identifier char #define SIDENT 24 // Match identifier char but no digit #define KWORD 25 // Match keyword char #define SKWORD 26 // Match word char but no digit #define FNAME 27 // Match file name char #define SFNAME 28 // Match file name char but no digit #define PRINT 29 // Match printable char #define SPRINT 30 // Match printable char but no digit #define WHITE 31 // Match whitespace char #define NWHITE 32 // Match non-whitespace char #define DIGIT 33 // Match digit char #define NDIGIT 34 // Match non-digit char #define HEX 35 // Match hex char #define NHEX 36 // Match non-hex char #define OCTAL 37 // Match octal char #define NOCTAL 38 // Match non-octal char #define WORD 39 // Match word char #define NWORD 40 // Match non-word char #define HEAD 41 // Match head char #define NHEAD 42 // Match non-head char #define ALPHA 43 // Match alpha char #define NALPHA 44 // Match non-alpha char #define LOWER 45 // Match lowercase char #define NLOWER 46 // Match non-lowercase char #define UPPER 47 // Match uppercase char #define NUPPER 48 // Match non-uppercase char #define LAST_NL NUPPER + ADD_NL #define WITH_NL(op) ((op) >= FIRST_NL && (op) <= LAST_NL) #define MOPEN 80 // -89 Mark this point in input as start of // \( subexpr. MOPEN + 0 marks start of // match. #define MCLOSE 90 // -99 Analogous to MOPEN. MCLOSE + 0 marks // end of match. #define BACKREF 100 // -109 node Match same string again \1-\9 #ifdef FEAT_SYN_HL # define ZOPEN 110 // -119 Mark this point in input as start of // \z( subexpr. # define ZCLOSE 120 // -129 Analogous to ZOPEN. # define ZREF 130 // -139 node Match external submatch \z1-\z9 #endif #define BRACE_COMPLEX 140 // -149 node Match nodes between m & n times #define NOPEN 150 // Mark this point in input as start of // \%( subexpr. #define NCLOSE 151 // Analogous to NOPEN. #define MULTIBYTECODE 200 // mbc Match one multi-byte character #define RE_BOF 201 // Match "" at beginning of file. #define RE_EOF 202 // Match "" at end of file. #define CURSOR 203 // Match location of cursor. #define RE_LNUM 204 // nr cmp Match line number #define RE_COL 205 // nr cmp Match column number #define RE_VCOL 206 // nr cmp Match virtual column number #define RE_MARK 207 // mark cmp Match mark position #define RE_VISUAL 208 // Match Visual area #define RE_COMPOSING 209 // any composing characters /* * Flags to be passed up and down. */ #define HASWIDTH 0x1 // Known never to match null string. #define SIMPLE 0x2 // Simple enough to be STAR/PLUS operand. #define SPSTART 0x4 // Starts with * or +. #define HASNL 0x8 // Contains some \n. #define HASLOOKBH 0x10 // Contains "\@<=" or "\@<!". #define WORST 0 // Worst case. static int num_complex_braces; // Complex \{...} count static char_u *regcode; // Code-emit pointer, or JUST_CALC_SIZE static long regsize; // Code size. static int reg_toolong; // TRUE when offset out of range static char_u had_endbrace[NSUBEXP]; // flags, TRUE if end of () found static long brace_min[10]; // Minimums for complex brace repeats static long brace_max[10]; // Maximums for complex brace repeats static int brace_count[10]; // Current counts for complex brace repeats static int one_exactly = FALSE; // only do one char for EXACTLY // When making changes to classchars also change nfa_classcodes. static char_u *classchars = (char_u *)".iIkKfFpPsSdDxXoOwWhHaAlLuU"; static int classcodes[] = { ANY, IDENT, SIDENT, KWORD, SKWORD, FNAME, SFNAME, PRINT, SPRINT, WHITE, NWHITE, DIGIT, NDIGIT, HEX, NHEX, OCTAL, NOCTAL, WORD, NWORD, HEAD, NHEAD, ALPHA, NALPHA, LOWER, NLOWER, UPPER, NUPPER }; /* * When regcode is set to this value, code is not emitted and size is computed * instead. */ #define JUST_CALC_SIZE ((char_u *) -1) // Values for rs_state in regitem_T. typedef enum regstate_E { RS_NOPEN = 0 // NOPEN and NCLOSE , RS_MOPEN // MOPEN + [0-9] , RS_MCLOSE // MCLOSE + [0-9] #ifdef FEAT_SYN_HL , RS_ZOPEN // ZOPEN + [0-9] , RS_ZCLOSE // ZCLOSE + [0-9] #endif , RS_BRANCH // BRANCH , RS_BRCPLX_MORE // BRACE_COMPLEX and trying one more match , RS_BRCPLX_LONG // BRACE_COMPLEX and trying longest match , RS_BRCPLX_SHORT // BRACE_COMPLEX and trying shortest match , RS_NOMATCH // NOMATCH , RS_BEHIND1 // BEHIND / NOBEHIND matching rest , RS_BEHIND2 // BEHIND / NOBEHIND matching behind part , RS_STAR_LONG // STAR/PLUS/BRACE_SIMPLE longest match , RS_STAR_SHORT // STAR/PLUS/BRACE_SIMPLE shortest match } regstate_T; /* * Structure used to save the current input state, when it needs to be * restored after trying a match. Used by reg_save() and reg_restore(). * Also stores the length of "backpos". */ typedef struct { union { char_u *ptr; // rex.input pointer, for single-line regexp lpos_T pos; // rex.input pos, for multi-line regexp } rs_u; int rs_len; } regsave_T; // struct to save start/end pointer/position in for \(\) typedef struct { union { char_u *ptr; lpos_T pos; } se_u; } save_se_T; // used for BEHIND and NOBEHIND matching typedef struct regbehind_S { regsave_T save_after; regsave_T save_behind; int save_need_clear_subexpr; save_se_T save_start[NSUBEXP]; save_se_T save_end[NSUBEXP]; } regbehind_T; /* * When there are alternatives a regstate_T is put on the regstack to remember * what we are doing. * Before it may be another type of item, depending on rs_state, to remember * more things. */ typedef struct regitem_S { regstate_T rs_state; // what we are doing, one of RS_ above short rs_no; // submatch nr or BEHIND/NOBEHIND char_u *rs_scan; // current node in program union { save_se_T sesave; regsave_T regsave; } rs_un; // room for saving rex.input } regitem_T; // used for STAR, PLUS and BRACE_SIMPLE matching typedef struct regstar_S { int nextb; // next byte int nextb_ic; // next byte reverse case long count; long minval; long maxval; } regstar_T; // used to store input position when a BACK was encountered, so that we now if // we made any progress since the last time. typedef struct backpos_S { char_u *bp_scan; // "scan" where BACK was encountered regsave_T bp_pos; // last input position } backpos_T; /* * "regstack" and "backpos" are used by regmatch(). They are kept over calls * to avoid invoking malloc() and free() often. * "regstack" is a stack with regitem_T items, sometimes preceded by regstar_T * or regbehind_T. * "backpos_T" is a table with backpos_T for BACK */ static garray_T regstack = {0, 0, 0, 0, NULL}; static garray_T backpos = {0, 0, 0, 0, NULL}; static regsave_T behind_pos; /* * Both for regstack and backpos tables we use the following strategy of * allocation (to reduce malloc/free calls): * - Initial size is fairly small. * - When needed, the tables are grown bigger (8 times at first, double after * that). * - After executing the match we free the memory only if the array has grown. * Thus the memory is kept allocated when it's at the initial size. * This makes it fast while not keeping a lot of memory allocated. * A three times speed increase was observed when using many simple patterns. */ #define REGSTACK_INITIAL 2048 #define BACKPOS_INITIAL 64 /* * Opcode notes: * * BRANCH The set of branches constituting a single choice are hooked * together with their "next" pointers, since precedence prevents * anything being concatenated to any individual branch. The * "next" pointer of the last BRANCH in a choice points to the * thing following the whole choice. This is also where the * final "next" pointer of each individual branch points; each * branch starts with the operand node of a BRANCH node. * * BACK Normal "next" pointers all implicitly point forward; BACK * exists to make loop structures possible. * * STAR,PLUS '=', and complex '*' and '+', are implemented as circular * BRANCH structures using BACK. Simple cases (one character * per match) are implemented with STAR and PLUS for speed * and to minimize recursive plunges. * * BRACE_LIMITS This is always followed by a BRACE_SIMPLE or BRACE_COMPLEX * node, and defines the min and max limits to be used for that * node. * * MOPEN,MCLOSE ...are numbered at compile time. * ZOPEN,ZCLOSE ...ditto */ /* * A node is one char of opcode followed by two chars of "next" pointer. * "Next" pointers are stored as two 8-bit bytes, high order first. The * value is a positive offset from the opcode of the node containing it. * An operand, if any, simply follows the node. (Note that much of the * code generation knows about this implicit relationship.) * * Using two bytes for the "next" pointer is vast overkill for most things, * but allows patterns to get big without disasters. */ #define OP(p) ((int)*(p)) #define NEXT(p) (((*((p) + 1) & 0377) << 8) + (*((p) + 2) & 0377)) #define OPERAND(p) ((p) + 3) // Obtain an operand that was stored as four bytes, MSB first. #define OPERAND_MIN(p) (((long)(p)[3] << 24) + ((long)(p)[4] << 16) \ + ((long)(p)[5] << 8) + (long)(p)[6]) // Obtain a second operand stored as four bytes. #define OPERAND_MAX(p) OPERAND_MIN((p) + 4) // Obtain a second single-byte operand stored after a four bytes operand. #define OPERAND_CMP(p) (p)[7] static char_u *reg(int paren, int *flagp); #ifdef BT_REGEXP_DUMP static void regdump(char_u *, bt_regprog_T *); #endif static int re_num_cmp(long_u val, char_u *scan); #ifdef DEBUG static char_u *regprop(char_u *); static int regnarrate = 0; #endif /* * Setup to parse the regexp. Used once to get the length and once to do it. */ static void regcomp_start( char_u *expr, int re_flags) // see vim_regcomp() { initchr(expr); if (re_flags & RE_MAGIC) reg_magic = MAGIC_ON; else reg_magic = MAGIC_OFF; reg_string = (re_flags & RE_STRING); reg_strict = (re_flags & RE_STRICT); get_cpo_flags(); num_complex_braces = 0; regnpar = 1; CLEAR_FIELD(had_endbrace); #ifdef FEAT_SYN_HL regnzpar = 1; re_has_z = 0; #endif regsize = 0L; reg_toolong = FALSE; regflags = 0; #if defined(FEAT_SYN_HL) || defined(PROTO) had_eol = FALSE; #endif } /* * Return TRUE if MULTIBYTECODE should be used instead of EXACTLY for * character "c". */ static int use_multibytecode(int c) { return has_mbyte && (*mb_char2len)(c) > 1 && (re_multi_type(peekchr()) != NOT_MULTI || (enc_utf8 && utf_iscomposing(c))); } /* * Emit (if appropriate) a byte of code */ static void regc(int b) { if (regcode == JUST_CALC_SIZE) regsize++; else *regcode++ = b; } /* * Emit (if appropriate) a multi-byte character of code */ static void regmbc(int c) { if (!has_mbyte && c > 0xff) return; if (regcode == JUST_CALC_SIZE) regsize += (*mb_char2len)(c); else regcode += (*mb_char2bytes)(c, regcode); } /* * Produce the bytes for equivalence class "c". * Currently only handles latin1, latin9 and utf-8. * NOTE: When changing this function, also change nfa_emit_equi_class() */ static void reg_equi_class(int c) { if (enc_utf8 || STRCMP(p_enc, "latin1") == 0 || STRCMP(p_enc, "iso-8859-15") == 0) { switch (c) { // Do not use '\300' style, it results in a negative number. case 'A': case 0xc0: case 0xc1: case 0xc2: case 0xc3: case 0xc4: case 0xc5: case 0x100: case 0x102: case 0x104: case 0x1cd: case 0x1de: case 0x1e0: case 0x1fa: case 0x202: case 0x226: case 0x23a: case 0x1e00: case 0x1ea0: case 0x1ea2: case 0x1ea4: case 0x1ea6: case 0x1ea8: case 0x1eaa: case 0x1eac: case 0x1eae: case 0x1eb0: case 0x1eb2: case 0x1eb4: case 0x1eb6: regmbc('A'); regmbc(0xc0); regmbc(0xc1); regmbc(0xc2); regmbc(0xc3); regmbc(0xc4); regmbc(0xc5); regmbc(0x100); regmbc(0x102); regmbc(0x104); regmbc(0x1cd); regmbc(0x1de); regmbc(0x1e0); regmbc(0x1fa); regmbc(0x202); regmbc(0x226); regmbc(0x23a); regmbc(0x1e00); regmbc(0x1ea0); regmbc(0x1ea2); regmbc(0x1ea4); regmbc(0x1ea6); regmbc(0x1ea8); regmbc(0x1eaa); regmbc(0x1eac); regmbc(0x1eae); regmbc(0x1eb0); regmbc(0x1eb2); regmbc(0x1eb4); regmbc(0x1eb6); return; case 'B': case 0x181: case 0x243: case 0x1e02: case 0x1e04: case 0x1e06: regmbc('B'); regmbc(0x181); regmbc(0x243); regmbc(0x1e02); regmbc(0x1e04); regmbc(0x1e06); return; case 'C': case 0xc7: case 0x106: case 0x108: case 0x10a: case 0x10c: case 0x187: case 0x23b: case 0x1e08: case 0xa792: regmbc('C'); regmbc(0xc7); regmbc(0x106); regmbc(0x108); regmbc(0x10a); regmbc(0x10c); regmbc(0x187); regmbc(0x23b); regmbc(0x1e08); regmbc(0xa792); return; case 'D': case 0x10e: case 0x110: case 0x18a: case 0x1e0a: case 0x1e0c: case 0x1e0e: case 0x1e10: case 0x1e12: regmbc('D'); regmbc(0x10e); regmbc(0x110); regmbc(0x18a); regmbc(0x1e0a); regmbc(0x1e0c); regmbc(0x1e0e); regmbc(0x1e10); regmbc(0x1e12); return; case 'E': case 0xc8: case 0xc9: case 0xca: case 0xcb: case 0x112: case 0x114: case 0x116: case 0x118: case 0x11a: case 0x204: case 0x206: case 0x228: case 0x246: case 0x1e14: case 0x1e16: case 0x1e18: case 0x1e1a: case 0x1e1c: case 0x1eb8: case 0x1eba: case 0x1ebc: case 0x1ebe: case 0x1ec0: case 0x1ec2: case 0x1ec4: case 0x1ec6: regmbc('E'); regmbc(0xc8); regmbc(0xc9); regmbc(0xca); regmbc(0xcb); regmbc(0x112); regmbc(0x114); regmbc(0x116); regmbc(0x118); regmbc(0x11a); regmbc(0x204); regmbc(0x206); regmbc(0x228); regmbc(0x246); regmbc(0x1e14); regmbc(0x1e16); regmbc(0x1e18); regmbc(0x1e1a); regmbc(0x1e1c); regmbc(0x1eb8); regmbc(0x1eba); regmbc(0x1ebc); regmbc(0x1ebe); regmbc(0x1ec0); regmbc(0x1ec2); regmbc(0x1ec4); regmbc(0x1ec6); return; case 'F': case 0x191: case 0x1e1e: case 0xa798: regmbc('F'); regmbc(0x191); regmbc(0x1e1e); regmbc(0xa798); return; case 'G': case 0x11c: case 0x11e: case 0x120: case 0x122: case 0x193: case 0x1e4: case 0x1e6: case 0x1f4: case 0x1e20: case 0xa7a0: regmbc('G'); regmbc(0x11c); regmbc(0x11e); regmbc(0x120); regmbc(0x122); regmbc(0x193); regmbc(0x1e4); regmbc(0x1e6); regmbc(0x1f4); regmbc(0x1e20); regmbc(0xa7a0); return; case 'H': case 0x124: case 0x126: case 0x21e: case 0x1e22: case 0x1e24: case 0x1e26: case 0x1e28: case 0x1e2a: case 0x2c67: regmbc('H'); regmbc(0x124); regmbc(0x126); regmbc(0x21e); regmbc(0x1e22); regmbc(0x1e24); regmbc(0x1e26); regmbc(0x1e28); regmbc(0x1e2a); regmbc(0x2c67); return; case 'I': case 0xcc: case 0xcd: case 0xce: case 0xcf: case 0x128: case 0x12a: case 0x12c: case 0x12e: case 0x130: case 0x197: case 0x1cf: case 0x208: case 0x20a: case 0x1e2c: case 0x1e2e: case 0x1ec8: case 0x1eca: regmbc('I'); regmbc(0xcc); regmbc(0xcd); regmbc(0xce); regmbc(0xcf); regmbc(0x128); regmbc(0x12a); regmbc(0x12c); regmbc(0x12e); regmbc(0x130); regmbc(0x197); regmbc(0x1cf); regmbc(0x208); regmbc(0x20a); regmbc(0x1e2c); regmbc(0x1e2e); regmbc(0x1ec8); regmbc(0x1eca); return; case 'J': case 0x134: case 0x248: regmbc('J'); regmbc(0x134); regmbc(0x248); return; case 'K': case 0x136: case 0x198: case 0x1e8: case 0x1e30: case 0x1e32: case 0x1e34: case 0x2c69: case 0xa740: regmbc('K'); regmbc(0x136); regmbc(0x198); regmbc(0x1e8); regmbc(0x1e30); regmbc(0x1e32); regmbc(0x1e34); regmbc(0x2c69); regmbc(0xa740); return; case 'L': case 0x139: case 0x13b: case 0x13d: case 0x13f: case 0x141: case 0x23d: case 0x1e36: case 0x1e38: case 0x1e3a: case 0x1e3c: case 0x2c60: regmbc('L'); regmbc(0x139); regmbc(0x13b); regmbc(0x13d); regmbc(0x13f); regmbc(0x141); regmbc(0x23d); regmbc(0x1e36); regmbc(0x1e38); regmbc(0x1e3a); regmbc(0x1e3c); regmbc(0x2c60); return; case 'M': case 0x1e3e: case 0x1e40: case 0x1e42: regmbc('M'); regmbc(0x1e3e); regmbc(0x1e40); regmbc(0x1e42); return; case 'N': case 0xd1: case 0x143: case 0x145: case 0x147: case 0x1f8: case 0x1e44: case 0x1e46: case 0x1e48: case 0x1e4a: case 0xa7a4: regmbc('N'); regmbc(0xd1); regmbc(0x143); regmbc(0x145); regmbc(0x147); regmbc(0x1f8); regmbc(0x1e44); regmbc(0x1e46); regmbc(0x1e48); regmbc(0x1e4a); regmbc(0xa7a4); return; case 'O': case 0xd2: case 0xd3: case 0xd4: case 0xd5: case 0xd6: case 0xd8: case 0x14c: case 0x14e: case 0x150: case 0x19f: case 0x1a0: case 0x1d1: case 0x1ea: case 0x1ec: case 0x1fe: case 0x20c: case 0x20e: case 0x22a: case 0x22c: case 0x22e: case 0x230: case 0x1e4c: case 0x1e4e: case 0x1e50: case 0x1e52: case 0x1ecc: case 0x1ece: case 0x1ed0: case 0x1ed2: case 0x1ed4: case 0x1ed6: case 0x1ed8: case 0x1eda: case 0x1edc: case 0x1ede: case 0x1ee0: case 0x1ee2: regmbc('O'); regmbc(0xd2); regmbc(0xd3); regmbc(0xd4); regmbc(0xd5); regmbc(0xd6); regmbc(0xd8); regmbc(0x14c); regmbc(0x14e); regmbc(0x150); regmbc(0x19f); regmbc(0x1a0); regmbc(0x1d1); regmbc(0x1ea); regmbc(0x1ec); regmbc(0x1fe); regmbc(0x20c); regmbc(0x20e); regmbc(0x22a); regmbc(0x22c); regmbc(0x22e); regmbc(0x230); regmbc(0x1e4c); regmbc(0x1e4e); regmbc(0x1e50); regmbc(0x1e52); regmbc(0x1ecc); regmbc(0x1ece); regmbc(0x1ed0); regmbc(0x1ed2); regmbc(0x1ed4); regmbc(0x1ed6); regmbc(0x1ed8); regmbc(0x1eda); regmbc(0x1edc); regmbc(0x1ede); regmbc(0x1ee0); regmbc(0x1ee2); return; case 'P': case 0x1a4: case 0x1e54: case 0x1e56: case 0x2c63: regmbc('P'); regmbc(0x1a4); regmbc(0x1e54); regmbc(0x1e56); regmbc(0x2c63); return; case 'Q': case 0x24a: regmbc('Q'); regmbc(0x24a); return; case 'R': case 0x154: case 0x156: case 0x158: case 0x210: case 0x212: case 0x24c: case 0x1e58: case 0x1e5a: case 0x1e5c: case 0x1e5e: case 0x2c64: case 0xa7a6: regmbc('R'); regmbc(0x154); regmbc(0x156); regmbc(0x210); regmbc(0x212); regmbc(0x158); regmbc(0x24c); regmbc(0x1e58); regmbc(0x1e5a); regmbc(0x1e5c); regmbc(0x1e5e); regmbc(0x2c64); regmbc(0xa7a6); return; case 'S': case 0x15a: case 0x15c: case 0x15e: case 0x160: case 0x218: case 0x1e60: case 0x1e62: case 0x1e64: case 0x1e66: case 0x1e68: case 0x2c7e: case 0xa7a8: regmbc('S'); regmbc(0x15a); regmbc(0x15c); regmbc(0x15e); regmbc(0x160); regmbc(0x218); regmbc(0x1e60); regmbc(0x1e62); regmbc(0x1e64); regmbc(0x1e66); regmbc(0x1e68); regmbc(0x2c7e); regmbc(0xa7a8); return; case 'T': case 0x162: case 0x164: case 0x166: case 0x1ac: case 0x1ae: case 0x21a: case 0x23e: case 0x1e6a: case 0x1e6c: case 0x1e6e: case 0x1e70: regmbc('T'); regmbc(0x162); regmbc(0x164); regmbc(0x166); regmbc(0x1ac); regmbc(0x23e); regmbc(0x1ae); regmbc(0x21a); regmbc(0x1e6a); regmbc(0x1e6c); regmbc(0x1e6e); regmbc(0x1e70); return; case 'U': case 0xd9: case 0xda: case 0xdb: case 0xdc: case 0x168: case 0x16a: case 0x16c: case 0x16e: case 0x170: case 0x172: case 0x1af: case 0x1d3: case 0x1d5: case 0x1d7: case 0x1d9: case 0x1db: case 0x214: case 0x216: case 0x244: case 0x1e72: case 0x1e74: case 0x1e76: case 0x1e78: case 0x1e7a: case 0x1ee4: case 0x1ee6: case 0x1ee8: case 0x1eea: case 0x1eec: case 0x1eee: case 0x1ef0: regmbc('U'); regmbc(0xd9); regmbc(0xda); regmbc(0xdb); regmbc(0xdc); regmbc(0x168); regmbc(0x16a); regmbc(0x16c); regmbc(0x16e); regmbc(0x170); regmbc(0x172); regmbc(0x1af); regmbc(0x1d3); regmbc(0x1d5); regmbc(0x1d7); regmbc(0x1d9); regmbc(0x1db); regmbc(0x214); regmbc(0x216); regmbc(0x244); regmbc(0x1e72); regmbc(0x1e74); regmbc(0x1e76); regmbc(0x1e78); regmbc(0x1e7a); regmbc(0x1ee4); regmbc(0x1ee6); regmbc(0x1ee8); regmbc(0x1eea); regmbc(0x1eec); regmbc(0x1eee); regmbc(0x1ef0); return; case 'V': case 0x1b2: case 0x1e7c: case 0x1e7e: regmbc('V'); regmbc(0x1b2); regmbc(0x1e7c); regmbc(0x1e7e); return; case 'W': case 0x174: case 0x1e80: case 0x1e82: case 0x1e84: case 0x1e86: case 0x1e88: regmbc('W'); regmbc(0x174); regmbc(0x1e80); regmbc(0x1e82); regmbc(0x1e84); regmbc(0x1e86); regmbc(0x1e88); return; case 'X': case 0x1e8a: case 0x1e8c: regmbc('X'); regmbc(0x1e8a); regmbc(0x1e8c); return; case 'Y': case 0xdd: case 0x176: case 0x178: case 0x1b3: case 0x232: case 0x24e: case 0x1e8e: case 0x1ef2: case 0x1ef6: case 0x1ef4: case 0x1ef8: regmbc('Y'); regmbc(0xdd); regmbc(0x176); regmbc(0x178); regmbc(0x1b3); regmbc(0x232); regmbc(0x24e); regmbc(0x1e8e); regmbc(0x1ef2); regmbc(0x1ef4); regmbc(0x1ef6); regmbc(0x1ef8); return; case 'Z': case 0x179: case 0x17b: case 0x17d: case 0x1b5: case 0x1e90: case 0x1e92: case 0x1e94: case 0x2c6b: regmbc('Z'); regmbc(0x179); regmbc(0x17b); regmbc(0x17d); regmbc(0x1b5); regmbc(0x1e90); regmbc(0x1e92); regmbc(0x1e94); regmbc(0x2c6b); return; case 'a': case 0xe0: case 0xe1: case 0xe2: case 0xe3: case 0xe4: case 0xe5: case 0x101: case 0x103: case 0x105: case 0x1ce: case 0x1df: case 0x1e1: case 0x1fb: case 0x201: case 0x203: case 0x227: case 0x1d8f: case 0x1e01: case 0x1e9a: case 0x1ea1: case 0x1ea3: case 0x1ea5: case 0x1ea7: case 0x1ea9: case 0x1eab: case 0x1ead: case 0x1eaf: case 0x1eb1: case 0x1eb3: case 0x1eb5: case 0x1eb7: case 0x2c65: regmbc('a'); regmbc(0xe0); regmbc(0xe1); regmbc(0xe2); regmbc(0xe3); regmbc(0xe4); regmbc(0xe5); regmbc(0x101); regmbc(0x103); regmbc(0x105); regmbc(0x1ce); regmbc(0x1df); regmbc(0x1e1); regmbc(0x1fb); regmbc(0x201); regmbc(0x203); regmbc(0x227); regmbc(0x1d8f); regmbc(0x1e01); regmbc(0x1e9a); regmbc(0x1ea1); regmbc(0x1ea3); regmbc(0x1ea5); regmbc(0x1ea7); regmbc(0x1ea9); regmbc(0x1eab); regmbc(0x1ead); regmbc(0x1eaf); regmbc(0x1eb1); regmbc(0x1eb3); regmbc(0x1eb5); regmbc(0x1eb7); regmbc(0x2c65); return; case 'b': case 0x180: case 0x253: case 0x1d6c: case 0x1d80: case 0x1e03: case 0x1e05: case 0x1e07: regmbc('b'); regmbc(0x180); regmbc(0x253); regmbc(0x1d6c); regmbc(0x1d80); regmbc(0x1e03); regmbc(0x1e05); regmbc(0x1e07); return; case 'c': case 0xe7: case 0x107: case 0x109: case 0x10b: case 0x10d: case 0x188: case 0x23c: case 0x1e09: case 0xa793: case 0xa794: regmbc('c'); regmbc(0xe7); regmbc(0x107); regmbc(0x109); regmbc(0x10b); regmbc(0x10d); regmbc(0x188); regmbc(0x23c); regmbc(0x1e09); regmbc(0xa793); regmbc(0xa794); return; case 'd': case 0x10f: case 0x111: case 0x257: case 0x1d6d: case 0x1d81: case 0x1d91: case 0x1e0b: case 0x1e0d: case 0x1e0f: case 0x1e11: case 0x1e13: regmbc('d'); regmbc(0x10f); regmbc(0x111); regmbc(0x257); regmbc(0x1d6d); regmbc(0x1d81); regmbc(0x1d91); regmbc(0x1e0b); regmbc(0x1e0d); regmbc(0x1e0f); regmbc(0x1e11); regmbc(0x1e13); return; case 'e': case 0xe8: case 0xe9: case 0xea: case 0xeb: case 0x113: case 0x115: case 0x117: case 0x119: case 0x11b: case 0x205: case 0x207: case 0x229: case 0x247: case 0x1d92: case 0x1e15: case 0x1e17: case 0x1e19: case 0x1e1b: case 0x1eb9: case 0x1ebb: case 0x1e1d: case 0x1ebd: case 0x1ebf: case 0x1ec1: case 0x1ec3: case 0x1ec5: case 0x1ec7: regmbc('e'); regmbc(0xe8); regmbc(0xe9); regmbc(0xea); regmbc(0xeb); regmbc(0x113); regmbc(0x115); regmbc(0x117); regmbc(0x119); regmbc(0x11b); regmbc(0x205); regmbc(0x207); regmbc(0x229); regmbc(0x247); regmbc(0x1d92); regmbc(0x1e15); regmbc(0x1e17); regmbc(0x1e19); regmbc(0x1e1b); regmbc(0x1e1d); regmbc(0x1eb9); regmbc(0x1ebb); regmbc(0x1ebd); regmbc(0x1ebf); regmbc(0x1ec1); regmbc(0x1ec3); regmbc(0x1ec5); regmbc(0x1ec7); return; case 'f': case 0x192: case 0x1d6e: case 0x1d82: case 0x1e1f: case 0xa799: regmbc('f'); regmbc(0x192); regmbc(0x1d6e); regmbc(0x1d82); regmbc(0x1e1f); regmbc(0xa799); return; case 'g': case 0x11d: case 0x11f: case 0x121: case 0x123: case 0x1e5: case 0x1e7: case 0x260: case 0x1f5: case 0x1d83: case 0x1e21: case 0xa7a1: regmbc('g'); regmbc(0x11d); regmbc(0x11f); regmbc(0x121); regmbc(0x123); regmbc(0x1e5); regmbc(0x1e7); regmbc(0x1f5); regmbc(0x260); regmbc(0x1d83); regmbc(0x1e21); regmbc(0xa7a1); return; case 'h': case 0x125: case 0x127: case 0x21f: case 0x1e23: case 0x1e25: case 0x1e27: case 0x1e29: case 0x1e2b: case 0x1e96: case 0x2c68: case 0xa795: regmbc('h'); regmbc(0x125); regmbc(0x127); regmbc(0x21f); regmbc(0x1e23); regmbc(0x1e25); regmbc(0x1e27); regmbc(0x1e29); regmbc(0x1e2b); regmbc(0x1e96); regmbc(0x2c68); regmbc(0xa795); return; case 'i': case 0xec: case 0xed: case 0xee: case 0xef: case 0x129: case 0x12b: case 0x12d: case 0x12f: case 0x1d0: case 0x209: case 0x20b: case 0x268: case 0x1d96: case 0x1e2d: case 0x1e2f: case 0x1ec9: case 0x1ecb: regmbc('i'); regmbc(0xec); regmbc(0xed); regmbc(0xee); regmbc(0xef); regmbc(0x129); regmbc(0x12b); regmbc(0x12d); regmbc(0x12f); regmbc(0x1d0); regmbc(0x209); regmbc(0x20b); regmbc(0x268); regmbc(0x1d96); regmbc(0x1e2d); regmbc(0x1e2f); regmbc(0x1ec9); regmbc(0x1ecb); return; case 'j': case 0x135: case 0x1f0: case 0x249: regmbc('j'); regmbc(0x135); regmbc(0x1f0); regmbc(0x249); return; case 'k': case 0x137: case 0x199: case 0x1e9: case 0x1d84: case 0x1e31: case 0x1e33: case 0x1e35: case 0x2c6a: case 0xa741: regmbc('k'); regmbc(0x137); regmbc(0x199); regmbc(0x1e9); regmbc(0x1d84); regmbc(0x1e31); regmbc(0x1e33); regmbc(0x1e35); regmbc(0x2c6a); regmbc(0xa741); return; case 'l': case 0x13a: case 0x13c: case 0x13e: case 0x140: case 0x142: case 0x19a: case 0x1e37: case 0x1e39: case 0x1e3b: case 0x1e3d: case 0x2c61: regmbc('l'); regmbc(0x13a); regmbc(0x13c); regmbc(0x13e); regmbc(0x140); regmbc(0x142); regmbc(0x19a); regmbc(0x1e37); regmbc(0x1e39); regmbc(0x1e3b); regmbc(0x1e3d); regmbc(0x2c61); return; case 'm': case 0x1d6f: case 0x1e3f: case 0x1e41: case 0x1e43: regmbc('m'); regmbc(0x1d6f); regmbc(0x1e3f); regmbc(0x1e41); regmbc(0x1e43); return; case 'n': case 0xf1: case 0x144: case 0x146: case 0x148: case 0x149: case 0x1f9: case 0x1d70: case 0x1d87: case 0x1e45: case 0x1e47: case 0x1e49: case 0x1e4b: case 0xa7a5: regmbc('n'); regmbc(0xf1); regmbc(0x144); regmbc(0x146); regmbc(0x148); regmbc(0x149); regmbc(0x1f9); regmbc(0x1d70); regmbc(0x1d87); regmbc(0x1e45); regmbc(0x1e47); regmbc(0x1e49); regmbc(0x1e4b); regmbc(0xa7a5); return; case 'o': case 0xf2: case 0xf3: case 0xf4: case 0xf5: case 0xf6: case 0xf8: case 0x14d: case 0x14f: case 0x151: case 0x1a1: case 0x1d2: case 0x1eb: case 0x1ed: case 0x1ff: case 0x20d: case 0x20f: case 0x22b: case 0x22d: case 0x22f: case 0x231: case 0x275: case 0x1e4d: case 0x1e4f: case 0x1e51: case 0x1e53: case 0x1ecd: case 0x1ecf: case 0x1ed1: case 0x1ed3: case 0x1ed5: case 0x1ed7: case 0x1ed9: case 0x1edb: case 0x1edd: case 0x1edf: case 0x1ee1: case 0x1ee3: regmbc('o'); regmbc(0xf2); regmbc(0xf3); regmbc(0xf4); regmbc(0xf5); regmbc(0xf6); regmbc(0xf8); regmbc(0x14d); regmbc(0x14f); regmbc(0x151); regmbc(0x1a1); regmbc(0x1d2); regmbc(0x1eb); regmbc(0x1ed); regmbc(0x1ff); regmbc(0x20d); regmbc(0x20f); regmbc(0x22b); regmbc(0x22d); regmbc(0x22f); regmbc(0x231); regmbc(0x275); regmbc(0x1e4d); regmbc(0x1e4f); regmbc(0x1e51); regmbc(0x1e53); regmbc(0x1ecd); regmbc(0x1ecf); regmbc(0x1ed1); regmbc(0x1ed3); regmbc(0x1ed5); regmbc(0x1ed7); regmbc(0x1ed9); regmbc(0x1edb); regmbc(0x1edd); regmbc(0x1edf); regmbc(0x1ee1); regmbc(0x1ee3); return; case 'p': case 0x1a5: case 0x1d71: case 0x1d88: case 0x1d7d: case 0x1e55: case 0x1e57: regmbc('p'); regmbc(0x1a5); regmbc(0x1d71); regmbc(0x1d7d); regmbc(0x1d88); regmbc(0x1e55); regmbc(0x1e57); return; case 'q': case 0x24b: case 0x2a0: regmbc('q'); regmbc(0x24b); regmbc(0x2a0); return; case 'r': case 0x155: case 0x157: case 0x159: case 0x211: case 0x213: case 0x24d: case 0x27d: case 0x1d72: case 0x1d73: case 0x1d89: case 0x1e59: case 0x1e5b: case 0x1e5d: case 0x1e5f: case 0xa7a7: regmbc('r'); regmbc(0x155); regmbc(0x157); regmbc(0x159); regmbc(0x211); regmbc(0x213); regmbc(0x24d); regmbc(0x1d72); regmbc(0x1d73); regmbc(0x1d89); regmbc(0x1e59); regmbc(0x27d); regmbc(0x1e5b); regmbc(0x1e5d); regmbc(0x1e5f); regmbc(0xa7a7); return; case 's': case 0x15b: case 0x15d: case 0x15f: case 0x161: case 0x1e61: case 0x219: case 0x23f: case 0x1d74: case 0x1d8a: case 0x1e63: case 0x1e65: case 0x1e67: case 0x1e69: case 0xa7a9: regmbc('s'); regmbc(0x15b); regmbc(0x15d); regmbc(0x15f); regmbc(0x161); regmbc(0x23f); regmbc(0x219); regmbc(0x1d74); regmbc(0x1d8a); regmbc(0x1e61); regmbc(0x1e63); regmbc(0x1e65); regmbc(0x1e67); regmbc(0x1e69); regmbc(0xa7a9); return; case 't': case 0x163: case 0x165: case 0x167: case 0x1ab: case 0x1ad: case 0x21b: case 0x288: case 0x1d75: case 0x1e6b: case 0x1e6d: case 0x1e6f: case 0x1e71: case 0x1e97: case 0x2c66: regmbc('t'); regmbc(0x163); regmbc(0x165); regmbc(0x167); regmbc(0x1ab); regmbc(0x21b); regmbc(0x1ad); regmbc(0x288); regmbc(0x1d75); regmbc(0x1e6b); regmbc(0x1e6d); regmbc(0x1e6f); regmbc(0x1e71); regmbc(0x1e97); regmbc(0x2c66); return; case 'u': case 0xf9: case 0xfa: case 0xfb: case 0xfc: case 0x169: case 0x16b: case 0x16d: case 0x16f: case 0x171: case 0x173: case 0x1b0: case 0x1d4: case 0x1d6: case 0x1d8: case 0x1da: case 0x1dc: case 0x215: case 0x217: case 0x289: case 0x1e73: case 0x1d7e: case 0x1d99: case 0x1e75: case 0x1e77: case 0x1e79: case 0x1e7b: case 0x1ee5: case 0x1ee7: case 0x1ee9: case 0x1eeb: case 0x1eed: case 0x1eef: case 0x1ef1: regmbc('u'); regmbc(0xf9); regmbc(0xfa); regmbc(0xfb); regmbc(0xfc); regmbc(0x169); regmbc(0x16b); regmbc(0x16d); regmbc(0x16f); regmbc(0x171); regmbc(0x173); regmbc(0x1d6); regmbc(0x1d8); regmbc(0x1da); regmbc(0x1dc); regmbc(0x215); regmbc(0x217); regmbc(0x1b0); regmbc(0x1d4); regmbc(0x289); regmbc(0x1d7e); regmbc(0x1d99); regmbc(0x1e73); regmbc(0x1e75); regmbc(0x1e77); regmbc(0x1e79); regmbc(0x1e7b); regmbc(0x1ee5); regmbc(0x1ee7); regmbc(0x1ee9); regmbc(0x1eeb); regmbc(0x1eed); regmbc(0x1eef); regmbc(0x1ef1); return; case 'v': case 0x28b: case 0x1d8c: case 0x1e7d: case 0x1e7f: regmbc('v'); regmbc(0x28b); regmbc(0x1d8c); regmbc(0x1e7d); regmbc(0x1e7f); return; case 'w': case 0x175: case 0x1e81: case 0x1e83: case 0x1e85: case 0x1e87: case 0x1e89: case 0x1e98: regmbc('w'); regmbc(0x175); regmbc(0x1e81); regmbc(0x1e83); regmbc(0x1e85); regmbc(0x1e87); regmbc(0x1e89); regmbc(0x1e98); return; case 'x': case 0x1e8b: case 0x1e8d: regmbc('x'); regmbc(0x1e8b); regmbc(0x1e8d); return; case 'y': case 0xfd: case 0xff: case 0x177: case 0x1b4: case 0x233: case 0x24f: case 0x1e8f: case 0x1e99: case 0x1ef3: case 0x1ef5: case 0x1ef7: case 0x1ef9: regmbc('y'); regmbc(0xfd); regmbc(0xff); regmbc(0x177); regmbc(0x1b4); regmbc(0x233); regmbc(0x24f); regmbc(0x1e8f); regmbc(0x1e99); regmbc(0x1ef3); regmbc(0x1ef5); regmbc(0x1ef7); regmbc(0x1ef9); return; case 'z': case 0x17a: case 0x17c: case 0x17e: case 0x1b6: case 0x1d76: case 0x1d8e: case 0x1e91: case 0x1e93: case 0x1e95: case 0x2c6c: regmbc('z'); regmbc(0x17a); regmbc(0x17c); regmbc(0x17e); regmbc(0x1b6); regmbc(0x1d76); regmbc(0x1d8e); regmbc(0x1e91); regmbc(0x1e93); regmbc(0x1e95); regmbc(0x2c6c); return; } } regmbc(c); } /* * Emit a node. * Return pointer to generated code. */ static char_u * regnode(int op) { char_u *ret; ret = regcode; if (ret == JUST_CALC_SIZE) regsize += 3; else { *regcode++ = op; *regcode++ = NUL; // Null "next" pointer. *regcode++ = NUL; } return ret; } /* * Write a long as four bytes at "p" and return pointer to the next char. */ static char_u * re_put_long(char_u *p, long_u val) { *p++ = (char_u) ((val >> 24) & 0377); *p++ = (char_u) ((val >> 16) & 0377); *p++ = (char_u) ((val >> 8) & 0377); *p++ = (char_u) (val & 0377); return p; } /* * regnext - dig the "next" pointer out of a node * Returns NULL when calculating size, when there is no next item and when * there is an error. */ static char_u * regnext(char_u *p) { int offset; if (p == JUST_CALC_SIZE || reg_toolong) return NULL; offset = NEXT(p); if (offset == 0) return NULL; if (OP(p) == BACK) return p - offset; else return p + offset; } /* * Set the next-pointer at the end of a node chain. */ static void regtail(char_u *p, char_u *val) { char_u *scan; char_u *temp; int offset; if (p == JUST_CALC_SIZE) return; // Find last node. scan = p; for (;;) { temp = regnext(scan); if (temp == NULL) break; scan = temp; } if (OP(scan) == BACK) offset = (int)(scan - val); else offset = (int)(val - scan); // When the offset uses more than 16 bits it can no longer fit in the two // bytes available. Use a global flag to avoid having to check return // values in too many places. if (offset > 0xffff) reg_toolong = TRUE; else { *(scan + 1) = (char_u) (((unsigned)offset >> 8) & 0377); *(scan + 2) = (char_u) (offset & 0377); } } /* * Like regtail, on item after a BRANCH; nop if none. */ static void regoptail(char_u *p, char_u *val) { // When op is neither BRANCH nor BRACE_COMPLEX0-9, it is "operandless" if (p == NULL || p == JUST_CALC_SIZE || (OP(p) != BRANCH && (OP(p) < BRACE_COMPLEX || OP(p) > BRACE_COMPLEX + 9))) return; regtail(OPERAND(p), val); } /* * Insert an operator in front of already-emitted operand * * Means relocating the operand. */ static void reginsert(int op, char_u *opnd) { char_u *src; char_u *dst; char_u *place; if (regcode == JUST_CALC_SIZE) { regsize += 3; return; } src = regcode; regcode += 3; dst = regcode; while (src > opnd) *--dst = *--src; place = opnd; // Op node, where operand used to be. *place++ = op; *place++ = NUL; *place = NUL; } /* * Insert an operator in front of already-emitted operand. * Add a number to the operator. */ static void reginsert_nr(int op, long val, char_u *opnd) { char_u *src; char_u *dst; char_u *place; if (regcode == JUST_CALC_SIZE) { regsize += 7; return; } src = regcode; regcode += 7; dst = regcode; while (src > opnd) *--dst = *--src; place = opnd; // Op node, where operand used to be. *place++ = op; *place++ = NUL; *place++ = NUL; re_put_long(place, (long_u)val); } /* * Insert an operator in front of already-emitted operand. * The operator has the given limit values as operands. Also set next pointer. * * Means relocating the operand. */ static void reginsert_limits( int op, long minval, long maxval, char_u *opnd) { char_u *src; char_u *dst; char_u *place; if (regcode == JUST_CALC_SIZE) { regsize += 11; return; } src = regcode; regcode += 11; dst = regcode; while (src > opnd) *--dst = *--src; place = opnd; // Op node, where operand used to be. *place++ = op; *place++ = NUL; *place++ = NUL; place = re_put_long(place, (long_u)minval); place = re_put_long(place, (long_u)maxval); regtail(opnd, place); } /* * Return TRUE if the back reference is legal. We must have seen the close * brace. * TODO: Should also check that we don't refer to something that is repeated * (+*=): what instance of the repetition should we match? */ static int seen_endbrace(int refnum) { if (!had_endbrace[refnum]) { char_u *p; // Trick: check if "@<=" or "@<!" follows, in which case // the \1 can appear before the referenced match. for (p = regparse; *p != NUL; ++p) if (p[0] == '@' && p[1] == '<' && (p[2] == '!' || p[2] == '=')) break; if (*p == NUL) { emsg(_(e_illegal_back_reference)); rc_did_emsg = TRUE; return FALSE; } } return TRUE; } /* * Parse the lowest level. * * Optimization: gobbles an entire sequence of ordinary characters so that * it can turn them into a single node, which is smaller to store and * faster to run. Don't do this when one_exactly is set. */ static char_u * regatom(int *flagp) { char_u *ret; int flags; int c; char_u *p; int extra = 0; int save_prev_at_start = prev_at_start; *flagp = WORST; // Tentatively. c = getchr(); switch (c) { case Magic('^'): ret = regnode(BOL); break; case Magic('$'): ret = regnode(EOL); #if defined(FEAT_SYN_HL) || defined(PROTO) had_eol = TRUE; #endif break; case Magic('<'): ret = regnode(BOW); break; case Magic('>'): ret = regnode(EOW); break; case Magic('_'): c = no_Magic(getchr()); if (c == '^') // "\_^" is start-of-line { ret = regnode(BOL); break; } if (c == '$') // "\_$" is end-of-line { ret = regnode(EOL); #if defined(FEAT_SYN_HL) || defined(PROTO) had_eol = TRUE; #endif break; } extra = ADD_NL; *flagp |= HASNL; // "\_[" is character range plus newline if (c == '[') goto collection; // "\_x" is character class plus newline // FALLTHROUGH // Character classes. case Magic('.'): case Magic('i'): case Magic('I'): case Magic('k'): case Magic('K'): case Magic('f'): case Magic('F'): case Magic('p'): case Magic('P'): case Magic('s'): case Magic('S'): case Magic('d'): case Magic('D'): case Magic('x'): case Magic('X'): case Magic('o'): case Magic('O'): case Magic('w'): case Magic('W'): case Magic('h'): case Magic('H'): case Magic('a'): case Magic('A'): case Magic('l'): case Magic('L'): case Magic('u'): case Magic('U'): p = vim_strchr(classchars, no_Magic(c)); if (p == NULL) EMSG_RET_NULL(_(e_invalid_use_of_underscore)); // When '.' is followed by a composing char ignore the dot, so that // the composing char is matched here. if (enc_utf8 && c == Magic('.') && utf_iscomposing(peekchr())) { c = getchr(); goto do_multibyte; } ret = regnode(classcodes[p - classchars] + extra); *flagp |= HASWIDTH | SIMPLE; break; case Magic('n'): if (reg_string) { // In a string "\n" matches a newline character. ret = regnode(EXACTLY); regc(NL); regc(NUL); *flagp |= HASWIDTH | SIMPLE; } else { // In buffer text "\n" matches the end of a line. ret = regnode(NEWL); *flagp |= HASWIDTH | HASNL; } break; case Magic('('): if (one_exactly) EMSG_ONE_RET_NULL; ret = reg(REG_PAREN, &flags); if (ret == NULL) return NULL; *flagp |= flags & (HASWIDTH | SPSTART | HASNL | HASLOOKBH); break; case NUL: case Magic('|'): case Magic('&'): case Magic(')'): if (one_exactly) EMSG_ONE_RET_NULL; // Supposed to be caught earlier. IEMSG_RET_NULL(e_internal_error_in_regexp); // NOTREACHED case Magic('='): case Magic('?'): case Magic('+'): case Magic('@'): case Magic('{'): case Magic('*'): c = no_Magic(c); EMSG3_RET_NULL(_(e_str_chr_follows_nothing), (c == '*' ? reg_magic >= MAGIC_ON : reg_magic == MAGIC_ALL), c); // NOTREACHED case Magic('~'): // previous substitute pattern if (reg_prev_sub != NULL) { char_u *lp; ret = regnode(EXACTLY); lp = reg_prev_sub; while (*lp != NUL) regc(*lp++); regc(NUL); if (*reg_prev_sub != NUL) { *flagp |= HASWIDTH; if ((lp - reg_prev_sub) == 1) *flagp |= SIMPLE; } } else EMSG_RET_NULL(_(e_no_previous_substitute_regular_expression)); break; case Magic('1'): case Magic('2'): case Magic('3'): case Magic('4'): case Magic('5'): case Magic('6'): case Magic('7'): case Magic('8'): case Magic('9'): { int refnum; refnum = c - Magic('0'); if (!seen_endbrace(refnum)) return NULL; ret = regnode(BACKREF + refnum); } break; case Magic('z'): { c = no_Magic(getchr()); switch (c) { #ifdef FEAT_SYN_HL case '(': if ((reg_do_extmatch & REX_SET) == 0) EMSG_RET_NULL(_(e_z_not_allowed_here)); if (one_exactly) EMSG_ONE_RET_NULL; ret = reg(REG_ZPAREN, &flags); if (ret == NULL) return NULL; *flagp |= flags & (HASWIDTH|SPSTART|HASNL|HASLOOKBH); re_has_z = REX_SET; break; case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': if ((reg_do_extmatch & REX_USE) == 0) EMSG_RET_NULL(_(e_z1_z9_not_allowed_here)); ret = regnode(ZREF + c - '0'); re_has_z = REX_USE; break; #endif case 's': ret = regnode(MOPEN + 0); if (re_mult_next("\\zs") == FAIL) return NULL; break; case 'e': ret = regnode(MCLOSE + 0); if (re_mult_next("\\ze") == FAIL) return NULL; break; default: EMSG_RET_NULL(_(e_invalid_character_after_bsl_z)); } } break; case Magic('%'): { c = no_Magic(getchr()); switch (c) { // () without a back reference case '(': if (one_exactly) EMSG_ONE_RET_NULL; ret = reg(REG_NPAREN, &flags); if (ret == NULL) return NULL; *flagp |= flags & (HASWIDTH | SPSTART | HASNL | HASLOOKBH); break; // Catch \%^ and \%$ regardless of where they appear in the // pattern -- regardless of whether or not it makes sense. case '^': ret = regnode(RE_BOF); break; case '$': ret = regnode(RE_EOF); break; case '#': if (regparse[0] == '=' && regparse[1] >= 48 && regparse[1] <= 50) { // misplaced \%#=1 semsg(_(e_atom_engine_must_be_at_start_of_pattern), regparse[1]); return FAIL; } ret = regnode(CURSOR); break; case 'V': ret = regnode(RE_VISUAL); break; case 'C': ret = regnode(RE_COMPOSING); break; // \%[abc]: Emit as a list of branches, all ending at the last // branch which matches nothing. case '[': if (one_exactly) // doesn't nest EMSG_ONE_RET_NULL; { char_u *lastbranch; char_u *lastnode = NULL; char_u *br; ret = NULL; while ((c = getchr()) != ']') { if (c == NUL) EMSG2_RET_NULL(_(e_missing_sb_after_str), reg_magic == MAGIC_ALL); br = regnode(BRANCH); if (ret == NULL) ret = br; else { regtail(lastnode, br); if (reg_toolong) return NULL; } ungetchr(); one_exactly = TRUE; lastnode = regatom(flagp); one_exactly = FALSE; if (lastnode == NULL) return NULL; } if (ret == NULL) EMSG2_RET_NULL(_(e_empty_str_brackets), reg_magic == MAGIC_ALL); lastbranch = regnode(BRANCH); br = regnode(NOTHING); if (ret != JUST_CALC_SIZE) { regtail(lastnode, br); regtail(lastbranch, br); // connect all branches to the NOTHING // branch at the end for (br = ret; br != lastnode; ) { if (OP(br) == BRANCH) { regtail(br, lastbranch); if (reg_toolong) return NULL; br = OPERAND(br); } else br = regnext(br); } } *flagp &= ~(HASWIDTH | SIMPLE); break; } case 'd': // %d123 decimal case 'o': // %o123 octal case 'x': // %xab hex 2 case 'u': // %uabcd hex 4 case 'U': // %U1234abcd hex 8 { long i; switch (c) { case 'd': i = getdecchrs(); break; case 'o': i = getoctchrs(); break; case 'x': i = gethexchrs(2); break; case 'u': i = gethexchrs(4); break; case 'U': i = gethexchrs(8); break; default: i = -1; break; } if (i < 0 || i > INT_MAX) EMSG2_RET_NULL( _(e_invalid_character_after_str_2), reg_magic == MAGIC_ALL); if (use_multibytecode(i)) ret = regnode(MULTIBYTECODE); else ret = regnode(EXACTLY); if (i == 0) regc(0x0a); else regmbc(i); regc(NUL); *flagp |= HASWIDTH; break; } default: if (VIM_ISDIGIT(c) || c == '<' || c == '>' || c == '\'' || c == '.') { long_u n = 0; int cmp; int cur = FALSE; int got_digit = FALSE; cmp = c; if (cmp == '<' || cmp == '>') c = getchr(); if (no_Magic(c) == '.') { cur = TRUE; c = getchr(); } while (VIM_ISDIGIT(c)) { got_digit = TRUE; n = n * 10 + (c - '0'); c = getchr(); } if (c == '\'' && n == 0) { // "\%'m", "\%<'m" and "\%>'m": Mark c = getchr(); ret = regnode(RE_MARK); if (ret == JUST_CALC_SIZE) regsize += 2; else { *regcode++ = c; *regcode++ = cmp; } break; } else if ((c == 'l' || c == 'c' || c == 'v') && (cur || got_digit)) { if (cur && n) { semsg(_(e_regexp_number_after_dot_pos_search_chr), no_Magic(c)); rc_did_emsg = TRUE; return NULL; } if (c == 'l') { if (cur) n = curwin->w_cursor.lnum; ret = regnode(RE_LNUM); if (save_prev_at_start) at_start = TRUE; } else if (c == 'c') { if (cur) { n = curwin->w_cursor.col; n++; } ret = regnode(RE_COL); } else { if (cur) { colnr_T vcol = 0; getvvcol(curwin, &curwin->w_cursor, NULL, NULL, &vcol); ++vcol; n = vcol; } ret = regnode(RE_VCOL); } if (ret == JUST_CALC_SIZE) regsize += 5; else { // put the number and the optional // comparator after the opcode regcode = re_put_long(regcode, n); *regcode++ = cmp; } break; } } EMSG2_RET_NULL(_(e_invalid_character_after_str), reg_magic == MAGIC_ALL); } } break; case Magic('['): collection: { char_u *lp; // If there is no matching ']', we assume the '[' is a normal // character. This makes 'incsearch' and ":help [" work. lp = skip_anyof(regparse); if (*lp == ']') // there is a matching ']' { int startc = -1; // > 0 when next '-' is a range int endc; // In a character class, different parsing rules apply. // Not even \ is special anymore, nothing is. if (*regparse == '^') // Complement of range. { ret = regnode(ANYBUT + extra); regparse++; } else ret = regnode(ANYOF + extra); // At the start ']' and '-' mean the literal character. if (*regparse == ']' || *regparse == '-') { startc = *regparse; regc(*regparse++); } while (*regparse != NUL && *regparse != ']') { if (*regparse == '-') { ++regparse; // The '-' is not used for a range at the end and // after or before a '\n'. if (*regparse == ']' || *regparse == NUL || startc == -1 || (regparse[0] == '\\' && regparse[1] == 'n')) { regc('-'); startc = '-'; // [--x] is a range } else { // Also accept "a-[.z.]" endc = 0; if (*regparse == '[') endc = get_coll_element(®parse); if (endc == 0) { if (has_mbyte) endc = mb_ptr2char_adv(®parse); else endc = *regparse++; } // Handle \o40, \x20 and \u20AC style sequences if (endc == '\\' && !reg_cpo_lit && !reg_cpo_bsl) endc = coll_get_char(); if (startc > endc) EMSG_RET_NULL(_(e_reverse_range_in_character_class)); if (has_mbyte && ((*mb_char2len)(startc) > 1 || (*mb_char2len)(endc) > 1)) { // Limit to a range of 256 chars. if (endc > startc + 256) EMSG_RET_NULL(_(e_range_too_large_in_character_class)); while (++startc <= endc) regmbc(startc); } else { while (++startc <= endc) regc(startc); } startc = -1; } } // Only "\]", "\^", "\]" and "\\" are special in Vi. Vim // accepts "\t", "\e", etc., but only when the 'l' flag in // 'cpoptions' is not included. // Posix doesn't recognize backslash at all. else if (*regparse == '\\' && !reg_cpo_bsl && (vim_strchr(REGEXP_INRANGE, regparse[1]) != NULL || (!reg_cpo_lit && vim_strchr(REGEXP_ABBR, regparse[1]) != NULL))) { regparse++; if (*regparse == 'n') { // '\n' in range: also match NL if (ret != JUST_CALC_SIZE) { // Using \n inside [^] does not change what // matches. "[^\n]" is the same as ".". if (*ret == ANYOF) { *ret = ANYOF + ADD_NL; *flagp |= HASNL; } // else: must have had a \n already } regparse++; startc = -1; } else if (*regparse == 'd' || *regparse == 'o' || *regparse == 'x' || *regparse == 'u' || *regparse == 'U') { startc = coll_get_char(); if (startc == 0) regc(0x0a); else regmbc(startc); } else { startc = backslash_trans(*regparse++); regc(startc); } } else if (*regparse == '[') { int c_class; int cu; c_class = get_char_class(®parse); startc = -1; // Characters assumed to be 8 bits! switch (c_class) { case CLASS_NONE: c_class = get_equi_class(®parse); if (c_class != 0) { // produce equivalence class reg_equi_class(c_class); } else if ((c_class = get_coll_element(®parse)) != 0) { // produce a collating element regmbc(c_class); } else { // literal '[', allow [[-x] as a range startc = *regparse++; regc(startc); } break; case CLASS_ALNUM: for (cu = 1; cu < 128; cu++) if (isalnum(cu)) regmbc(cu); break; case CLASS_ALPHA: for (cu = 1; cu < 128; cu++) if (isalpha(cu)) regmbc(cu); break; case CLASS_BLANK: regc(' '); regc('\t'); break; case CLASS_CNTRL: for (cu = 1; cu <= 127; cu++) if (iscntrl(cu)) regmbc(cu); break; case CLASS_DIGIT: for (cu = 1; cu <= 127; cu++) if (VIM_ISDIGIT(cu)) regmbc(cu); break; case CLASS_GRAPH: for (cu = 1; cu <= 127; cu++) if (isgraph(cu)) regmbc(cu); break; case CLASS_LOWER: for (cu = 1; cu <= 255; cu++) if (MB_ISLOWER(cu) && cu != 170 && cu != 186) regmbc(cu); break; case CLASS_PRINT: for (cu = 1; cu <= 255; cu++) if (vim_isprintc(cu)) regmbc(cu); break; case CLASS_PUNCT: for (cu = 1; cu < 128; cu++) if (ispunct(cu)) regmbc(cu); break; case CLASS_SPACE: for (cu = 9; cu <= 13; cu++) regc(cu); regc(' '); break; case CLASS_UPPER: for (cu = 1; cu <= 255; cu++) if (MB_ISUPPER(cu)) regmbc(cu); break; case CLASS_XDIGIT: for (cu = 1; cu <= 255; cu++) if (vim_isxdigit(cu)) regmbc(cu); break; case CLASS_TAB: regc('\t'); break; case CLASS_RETURN: regc('\r'); break; case CLASS_BACKSPACE: regc('\b'); break; case CLASS_ESCAPE: regc('\033'); break; case CLASS_IDENT: for (cu = 1; cu <= 255; cu++) if (vim_isIDc(cu)) regmbc(cu); break; case CLASS_KEYWORD: for (cu = 1; cu <= 255; cu++) if (reg_iswordc(cu)) regmbc(cu); break; case CLASS_FNAME: for (cu = 1; cu <= 255; cu++) if (vim_isfilec(cu)) regmbc(cu); break; } } else { if (has_mbyte) { int len; // produce a multibyte character, including any // following composing characters startc = mb_ptr2char(regparse); len = (*mb_ptr2len)(regparse); if (enc_utf8 && utf_char2len(startc) != len) startc = -1; // composing chars while (--len >= 0) regc(*regparse++); } else { startc = *regparse++; regc(startc); } } } regc(NUL); prevchr_len = 1; // last char was the ']' if (*regparse != ']') EMSG_RET_NULL(_(e_too_many_brackets)); // Cannot happen? skipchr(); // let's be friends with the lexer again *flagp |= HASWIDTH | SIMPLE; break; } else if (reg_strict) EMSG2_RET_NULL(_(e_missing_rsb_after_str_lsb), reg_magic > MAGIC_OFF); } // FALLTHROUGH default: { int len; // A multi-byte character is handled as a separate atom if it's // before a multi and when it's a composing char. if (use_multibytecode(c)) { do_multibyte: ret = regnode(MULTIBYTECODE); regmbc(c); *flagp |= HASWIDTH | SIMPLE; break; } ret = regnode(EXACTLY); // Append characters as long as: // - there is no following multi, we then need the character in // front of it as a single character operand // - not running into a Magic character // - "one_exactly" is not set // But always emit at least one character. Might be a Multi, // e.g., a "[" without matching "]". for (len = 0; c != NUL && (len == 0 || (re_multi_type(peekchr()) == NOT_MULTI && !one_exactly && !is_Magic(c))); ++len) { c = no_Magic(c); if (has_mbyte) { regmbc(c); if (enc_utf8) { int l; // Need to get composing character too. for (;;) { l = utf_ptr2len(regparse); if (!UTF_COMPOSINGLIKE(regparse, regparse + l)) break; regmbc(utf_ptr2char(regparse)); skipchr(); } } } else regc(c); c = getchr(); } ungetchr(); regc(NUL); *flagp |= HASWIDTH; if (len == 1) *flagp |= SIMPLE; } break; } return ret; } /* * Parse something followed by possible [*+=]. * * Note that the branching code sequences used for = and the general cases * of * and + are somewhat optimized: they use the same NOTHING node as * both the endmarker for their branch list and the body of the last branch. * It might seem that this node could be dispensed with entirely, but the * endmarker role is not redundant. */ static char_u * regpiece(int *flagp) { char_u *ret; int op; char_u *next; int flags; long minval; long maxval; ret = regatom(&flags); if (ret == NULL) return NULL; op = peekchr(); if (re_multi_type(op) == NOT_MULTI) { *flagp = flags; return ret; } // default flags *flagp = (WORST | SPSTART | (flags & (HASNL | HASLOOKBH))); skipchr(); switch (op) { case Magic('*'): if (flags & SIMPLE) reginsert(STAR, ret); else { // Emit x* as (x&|), where & means "self". reginsert(BRANCH, ret); // Either x regoptail(ret, regnode(BACK)); // and loop regoptail(ret, ret); // back regtail(ret, regnode(BRANCH)); // or regtail(ret, regnode(NOTHING)); // null. } break; case Magic('+'): if (flags & SIMPLE) reginsert(PLUS, ret); else { // Emit x+ as x(&|), where & means "self". next = regnode(BRANCH); // Either regtail(ret, next); regtail(regnode(BACK), ret); // loop back regtail(next, regnode(BRANCH)); // or regtail(ret, regnode(NOTHING)); // null. } *flagp = (WORST | HASWIDTH | (flags & (HASNL | HASLOOKBH))); break; case Magic('@'): { int lop = END; long nr; nr = getdecchrs(); switch (no_Magic(getchr())) { case '=': lop = MATCH; break; // \@= case '!': lop = NOMATCH; break; // \@! case '>': lop = SUBPAT; break; // \@> case '<': switch (no_Magic(getchr())) { case '=': lop = BEHIND; break; // \@<= case '!': lop = NOBEHIND; break; // \@<! } } if (lop == END) EMSG2_RET_NULL(_(e_invalid_character_after_str_at), reg_magic == MAGIC_ALL); // Look behind must match with behind_pos. if (lop == BEHIND || lop == NOBEHIND) { regtail(ret, regnode(BHPOS)); *flagp |= HASLOOKBH; } regtail(ret, regnode(END)); // operand ends if (lop == BEHIND || lop == NOBEHIND) { if (nr < 0) nr = 0; // no limit is same as zero limit reginsert_nr(lop, nr, ret); } else reginsert(lop, ret); break; } case Magic('?'): case Magic('='): // Emit x= as (x|) reginsert(BRANCH, ret); // Either x regtail(ret, regnode(BRANCH)); // or next = regnode(NOTHING); // null. regtail(ret, next); regoptail(ret, next); break; case Magic('{'): if (!read_limits(&minval, &maxval)) return NULL; if (flags & SIMPLE) { reginsert(BRACE_SIMPLE, ret); reginsert_limits(BRACE_LIMITS, minval, maxval, ret); } else { if (num_complex_braces >= 10) EMSG2_RET_NULL(_(e_too_many_complex_str_curly), reg_magic == MAGIC_ALL); reginsert(BRACE_COMPLEX + num_complex_braces, ret); regoptail(ret, regnode(BACK)); regoptail(ret, ret); reginsert_limits(BRACE_LIMITS, minval, maxval, ret); ++num_complex_braces; } if (minval > 0 && maxval > 0) *flagp = (HASWIDTH | (flags & (HASNL | HASLOOKBH))); break; } if (re_multi_type(peekchr()) != NOT_MULTI) { // Can't have a multi follow a multi. if (peekchr() == Magic('*')) EMSG2_RET_NULL(_(e_nested_str), reg_magic >= MAGIC_ON); EMSG3_RET_NULL(_(e_nested_str_chr), reg_magic == MAGIC_ALL, no_Magic(peekchr())); } return ret; } /* * Parse one alternative of an | or & operator. * Implements the concatenation operator. */ static char_u * regconcat(int *flagp) { char_u *first = NULL; char_u *chain = NULL; char_u *latest; int flags; int cont = TRUE; *flagp = WORST; // Tentatively. while (cont) { switch (peekchr()) { case NUL: case Magic('|'): case Magic('&'): case Magic(')'): cont = FALSE; break; case Magic('Z'): regflags |= RF_ICOMBINE; skipchr_keepstart(); break; case Magic('c'): regflags |= RF_ICASE; skipchr_keepstart(); break; case Magic('C'): regflags |= RF_NOICASE; skipchr_keepstart(); break; case Magic('v'): reg_magic = MAGIC_ALL; skipchr_keepstart(); curchr = -1; break; case Magic('m'): reg_magic = MAGIC_ON; skipchr_keepstart(); curchr = -1; break; case Magic('M'): reg_magic = MAGIC_OFF; skipchr_keepstart(); curchr = -1; break; case Magic('V'): reg_magic = MAGIC_NONE; skipchr_keepstart(); curchr = -1; break; default: latest = regpiece(&flags); if (latest == NULL || reg_toolong) return NULL; *flagp |= flags & (HASWIDTH | HASNL | HASLOOKBH); if (chain == NULL) // First piece. *flagp |= flags & SPSTART; else regtail(chain, latest); chain = latest; if (first == NULL) first = latest; break; } } if (first == NULL) // Loop ran zero times. first = regnode(NOTHING); return first; } /* * Parse one alternative of an | operator. * Implements the & operator. */ static char_u * regbranch(int *flagp) { char_u *ret; char_u *chain = NULL; char_u *latest; int flags; *flagp = WORST | HASNL; // Tentatively. ret = regnode(BRANCH); for (;;) { latest = regconcat(&flags); if (latest == NULL) return NULL; // If one of the branches has width, the whole thing has. If one of // the branches anchors at start-of-line, the whole thing does. // If one of the branches uses look-behind, the whole thing does. *flagp |= flags & (HASWIDTH | SPSTART | HASLOOKBH); // If one of the branches doesn't match a line-break, the whole thing // doesn't. *flagp &= ~HASNL | (flags & HASNL); if (chain != NULL) regtail(chain, latest); if (peekchr() != Magic('&')) break; skipchr(); regtail(latest, regnode(END)); // operand ends if (reg_toolong) break; reginsert(MATCH, latest); chain = latest; } return ret; } /* * Parse regular expression, i.e. main body or parenthesized thing. * * Caller must absorb opening parenthesis. * * Combining parenthesis handling with the base level of regular expression * is a trifle forced, but the need to tie the tails of the branches to what * follows makes it hard to avoid. */ static char_u * reg( int paren, // REG_NOPAREN, REG_PAREN, REG_NPAREN or REG_ZPAREN int *flagp) { char_u *ret; char_u *br; char_u *ender; int parno = 0; int flags; *flagp = HASWIDTH; // Tentatively. #ifdef FEAT_SYN_HL if (paren == REG_ZPAREN) { // Make a ZOPEN node. if (regnzpar >= NSUBEXP) EMSG_RET_NULL(_(e_too_many_z)); parno = regnzpar; regnzpar++; ret = regnode(ZOPEN + parno); } else #endif if (paren == REG_PAREN) { // Make a MOPEN node. if (regnpar >= NSUBEXP) EMSG2_RET_NULL(_(e_too_many_str_open), reg_magic == MAGIC_ALL); parno = regnpar; ++regnpar; ret = regnode(MOPEN + parno); } else if (paren == REG_NPAREN) { // Make a NOPEN node. ret = regnode(NOPEN); } else ret = NULL; // Pick up the branches, linking them together. br = regbranch(&flags); if (br == NULL) return NULL; if (ret != NULL) regtail(ret, br); // [MZ]OPEN -> first. else ret = br; // If one of the branches can be zero-width, the whole thing can. // If one of the branches has * at start or matches a line-break, the // whole thing can. if (!(flags & HASWIDTH)) *flagp &= ~HASWIDTH; *flagp |= flags & (SPSTART | HASNL | HASLOOKBH); while (peekchr() == Magic('|')) { skipchr(); br = regbranch(&flags); if (br == NULL || reg_toolong) return NULL; regtail(ret, br); // BRANCH -> BRANCH. if (!(flags & HASWIDTH)) *flagp &= ~HASWIDTH; *flagp |= flags & (SPSTART | HASNL | HASLOOKBH); } // Make a closing node, and hook it on the end. ender = regnode( #ifdef FEAT_SYN_HL paren == REG_ZPAREN ? ZCLOSE + parno : #endif paren == REG_PAREN ? MCLOSE + parno : paren == REG_NPAREN ? NCLOSE : END); regtail(ret, ender); // Hook the tails of the branches to the closing node. for (br = ret; br != NULL; br = regnext(br)) regoptail(br, ender); // Check for proper termination. if (paren != REG_NOPAREN && getchr() != Magic(')')) { #ifdef FEAT_SYN_HL if (paren == REG_ZPAREN) EMSG_RET_NULL(_(e_unmatched_z)); else #endif if (paren == REG_NPAREN) EMSG2_RET_NULL(_(e_unmatched_str_percent_open), reg_magic == MAGIC_ALL); else EMSG2_RET_NULL(_(e_unmatched_str_open), reg_magic == MAGIC_ALL); } else if (paren == REG_NOPAREN && peekchr() != NUL) { if (curchr == Magic(')')) EMSG2_RET_NULL(_(e_unmatched_str_close), reg_magic == MAGIC_ALL); else EMSG_RET_NULL(_(e_trailing_characters)); // "Can't happen". // NOTREACHED } // Here we set the flag allowing back references to this set of // parentheses. if (paren == REG_PAREN) had_endbrace[parno] = TRUE; // have seen the close paren return ret; } /* * bt_regcomp() - compile a regular expression into internal code for the * traditional back track matcher. * Returns the program in allocated space. Returns NULL for an error. * * We can't allocate space until we know how big the compiled form will be, * but we can't compile it (and thus know how big it is) until we've got a * place to put the code. So we cheat: we compile it twice, once with code * generation turned off and size counting turned on, and once "for real". * This also means that we don't allocate space until we are sure that the * thing really will compile successfully, and we never have to move the * code and thus invalidate pointers into it. (Note that it has to be in * one piece because vim_free() must be able to free it all.) * * Whether upper/lower case is to be ignored is decided when executing the * program, it does not matter here. * * Beware that the optimization-preparation code in here knows about some * of the structure of the compiled regexp. * "re_flags": RE_MAGIC and/or RE_STRING. */ static regprog_T * bt_regcomp(char_u *expr, int re_flags) { bt_regprog_T *r; char_u *scan; char_u *longest; int len; int flags; if (expr == NULL) IEMSG_RET_NULL(e_null_argument); init_class_tab(); // First pass: determine size, legality. regcomp_start(expr, re_flags); regcode = JUST_CALC_SIZE; regc(REGMAGIC); if (reg(REG_NOPAREN, &flags) == NULL) return NULL; // Allocate space. r = alloc(offsetof(bt_regprog_T, program) + regsize); if (r == NULL) return NULL; r->re_in_use = FALSE; // Second pass: emit code. regcomp_start(expr, re_flags); regcode = r->program; regc(REGMAGIC); if (reg(REG_NOPAREN, &flags) == NULL || reg_toolong) { vim_free(r); if (reg_toolong) EMSG_RET_NULL(_(e_pattern_too_long)); return NULL; } // Dig out information for optimizations. r->regstart = NUL; // Worst-case defaults. r->reganch = 0; r->regmust = NULL; r->regmlen = 0; r->regflags = regflags; if (flags & HASNL) r->regflags |= RF_HASNL; if (flags & HASLOOKBH) r->regflags |= RF_LOOKBH; #ifdef FEAT_SYN_HL // Remember whether this pattern has any \z specials in it. r->reghasz = re_has_z; #endif scan = r->program + 1; // First BRANCH. if (OP(regnext(scan)) == END) // Only one top-level choice. { scan = OPERAND(scan); // Starting-point info. if (OP(scan) == BOL || OP(scan) == RE_BOF) { r->reganch++; scan = regnext(scan); } if (OP(scan) == EXACTLY) { if (has_mbyte) r->regstart = (*mb_ptr2char)(OPERAND(scan)); else r->regstart = *OPERAND(scan); } else if ((OP(scan) == BOW || OP(scan) == EOW || OP(scan) == NOTHING || OP(scan) == MOPEN + 0 || OP(scan) == NOPEN || OP(scan) == MCLOSE + 0 || OP(scan) == NCLOSE) && OP(regnext(scan)) == EXACTLY) { if (has_mbyte) r->regstart = (*mb_ptr2char)(OPERAND(regnext(scan))); else r->regstart = *OPERAND(regnext(scan)); } // If there's something expensive in the r.e., find the longest // literal string that must appear and make it the regmust. Resolve // ties in favor of later strings, since the regstart check works // with the beginning of the r.e. and avoiding duplication // strengthens checking. Not a strong reason, but sufficient in the // absence of others. // When the r.e. starts with BOW, it is faster to look for a regmust // first. Used a lot for "#" and "*" commands. (Added by mool). if ((flags & SPSTART || OP(scan) == BOW || OP(scan) == EOW) && !(flags & HASNL)) { longest = NULL; len = 0; for (; scan != NULL; scan = regnext(scan)) if (OP(scan) == EXACTLY && STRLEN(OPERAND(scan)) >= (size_t)len) { longest = OPERAND(scan); len = (int)STRLEN(OPERAND(scan)); } r->regmust = longest; r->regmlen = len; } } #ifdef BT_REGEXP_DUMP regdump(expr, r); #endif r->engine = &bt_regengine; return (regprog_T *)r; } #if defined(FEAT_SYN_HL) || defined(PROTO) /* * Check if during the previous call to vim_regcomp the EOL item "$" has been * found. This is messy, but it works fine. */ int vim_regcomp_had_eol(void) { return had_eol; } #endif /* * Get a number after a backslash that is inside []. * When nothing is recognized return a backslash. */ static int coll_get_char(void) { long nr = -1; switch (*regparse++) { case 'd': nr = getdecchrs(); break; case 'o': nr = getoctchrs(); break; case 'x': nr = gethexchrs(2); break; case 'u': nr = gethexchrs(4); break; case 'U': nr = gethexchrs(8); break; } if (nr < 0 || nr > INT_MAX) { // If getting the number fails be backwards compatible: the character // is a backslash. --regparse; nr = '\\'; } return nr; } /* * Free a compiled regexp program, returned by bt_regcomp(). */ static void bt_regfree(regprog_T *prog) { vim_free(prog); } #define ADVANCE_REGINPUT() MB_PTR_ADV(rex.input) /* * The arguments from BRACE_LIMITS are stored here. They are actually local * to regmatch(), but they are here to reduce the amount of stack space used * (it can be called recursively many times). */ static long bl_minval; static long bl_maxval; /* * Save the input line and position in a regsave_T. */ static void reg_save(regsave_T *save, garray_T *gap) { if (REG_MULTI) { save->rs_u.pos.col = (colnr_T)(rex.input - rex.line); save->rs_u.pos.lnum = rex.lnum; } else save->rs_u.ptr = rex.input; save->rs_len = gap->ga_len; } /* * Restore the input line and position from a regsave_T. */ static void reg_restore(regsave_T *save, garray_T *gap) { if (REG_MULTI) { if (rex.lnum != save->rs_u.pos.lnum) { // only call reg_getline() when the line number changed to save // a bit of time rex.lnum = save->rs_u.pos.lnum; rex.line = reg_getline(rex.lnum); } rex.input = rex.line + save->rs_u.pos.col; } else rex.input = save->rs_u.ptr; gap->ga_len = save->rs_len; } /* * Return TRUE if current position is equal to saved position. */ static int reg_save_equal(regsave_T *save) { if (REG_MULTI) return rex.lnum == save->rs_u.pos.lnum && rex.input == rex.line + save->rs_u.pos.col; return rex.input == save->rs_u.ptr; } // Save the sub-expressions before attempting a match. #define save_se(savep, posp, pp) \ REG_MULTI ? save_se_multi((savep), (posp)) : save_se_one((savep), (pp)) // After a failed match restore the sub-expressions. #define restore_se(savep, posp, pp) \ { \ if (REG_MULTI) \ *(posp) = (savep)->se_u.pos; \ else \ *(pp) = (savep)->se_u.ptr; \ } /* * Tentatively set the sub-expression start to the current position (after * calling regmatch() they will have changed). Need to save the existing * values for when there is no match. * Use se_save() to use pointer (save_se_multi()) or position (save_se_one()), * depending on REG_MULTI. */ static void save_se_multi(save_se_T *savep, lpos_T *posp) { savep->se_u.pos = *posp; posp->lnum = rex.lnum; posp->col = (colnr_T)(rex.input - rex.line); } static void save_se_one(save_se_T *savep, char_u **pp) { savep->se_u.ptr = *pp; *pp = rex.input; } /* * regrepeat - repeatedly match something simple, return how many. * Advances rex.input (and rex.lnum) to just after the matched chars. */ static int regrepeat( char_u *p, long maxcount) // maximum number of matches allowed { long count = 0; char_u *scan; char_u *opnd; int mask; int testval = 0; scan = rex.input; // Make local copy of rex.input for speed. opnd = OPERAND(p); switch (OP(p)) { case ANY: case ANY + ADD_NL: while (count < maxcount) { // Matching anything means we continue until end-of-line (or // end-of-file for ANY + ADD_NL), only limited by maxcount. while (*scan != NUL && count < maxcount) { ++count; MB_PTR_ADV(scan); } if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr || count == maxcount) break; ++count; // count the line-break reg_nextline(); scan = rex.input; if (got_int) break; } break; case IDENT: case IDENT + ADD_NL: testval = TRUE; // FALLTHROUGH case SIDENT: case SIDENT + ADD_NL: while (count < maxcount) { if (vim_isIDc(PTR2CHAR(scan)) && (testval || !VIM_ISDIGIT(*scan))) { MB_PTR_ADV(scan); } else if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) break; reg_nextline(); scan = rex.input; if (got_int) break; } else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) ++scan; else break; ++count; } break; case KWORD: case KWORD + ADD_NL: testval = TRUE; // FALLTHROUGH case SKWORD: case SKWORD + ADD_NL: while (count < maxcount) { if (vim_iswordp_buf(scan, rex.reg_buf) && (testval || !VIM_ISDIGIT(*scan))) { MB_PTR_ADV(scan); } else if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) break; reg_nextline(); scan = rex.input; if (got_int) break; } else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) ++scan; else break; ++count; } break; case FNAME: case FNAME + ADD_NL: testval = TRUE; // FALLTHROUGH case SFNAME: case SFNAME + ADD_NL: while (count < maxcount) { if (vim_isfilec(PTR2CHAR(scan)) && (testval || !VIM_ISDIGIT(*scan))) { MB_PTR_ADV(scan); } else if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) break; reg_nextline(); scan = rex.input; if (got_int) break; } else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) ++scan; else break; ++count; } break; case PRINT: case PRINT + ADD_NL: testval = TRUE; // FALLTHROUGH case SPRINT: case SPRINT + ADD_NL: while (count < maxcount) { if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) break; reg_nextline(); scan = rex.input; if (got_int) break; } else if (vim_isprintc(PTR2CHAR(scan)) == 1 && (testval || !VIM_ISDIGIT(*scan))) { MB_PTR_ADV(scan); } else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) ++scan; else break; ++count; } break; case WHITE: case WHITE + ADD_NL: testval = mask = RI_WHITE; do_class: while (count < maxcount) { int l; if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) break; reg_nextline(); scan = rex.input; if (got_int) break; } else if (has_mbyte && (l = (*mb_ptr2len)(scan)) > 1) { if (testval != 0) break; scan += l; } else if ((class_tab[*scan] & mask) == testval) ++scan; else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) ++scan; else break; ++count; } break; case NWHITE: case NWHITE + ADD_NL: mask = RI_WHITE; goto do_class; case DIGIT: case DIGIT + ADD_NL: testval = mask = RI_DIGIT; goto do_class; case NDIGIT: case NDIGIT + ADD_NL: mask = RI_DIGIT; goto do_class; case HEX: case HEX + ADD_NL: testval = mask = RI_HEX; goto do_class; case NHEX: case NHEX + ADD_NL: mask = RI_HEX; goto do_class; case OCTAL: case OCTAL + ADD_NL: testval = mask = RI_OCTAL; goto do_class; case NOCTAL: case NOCTAL + ADD_NL: mask = RI_OCTAL; goto do_class; case WORD: case WORD + ADD_NL: testval = mask = RI_WORD; goto do_class; case NWORD: case NWORD + ADD_NL: mask = RI_WORD; goto do_class; case HEAD: case HEAD + ADD_NL: testval = mask = RI_HEAD; goto do_class; case NHEAD: case NHEAD + ADD_NL: mask = RI_HEAD; goto do_class; case ALPHA: case ALPHA + ADD_NL: testval = mask = RI_ALPHA; goto do_class; case NALPHA: case NALPHA + ADD_NL: mask = RI_ALPHA; goto do_class; case LOWER: case LOWER + ADD_NL: testval = mask = RI_LOWER; goto do_class; case NLOWER: case NLOWER + ADD_NL: mask = RI_LOWER; goto do_class; case UPPER: case UPPER + ADD_NL: testval = mask = RI_UPPER; goto do_class; case NUPPER: case NUPPER + ADD_NL: mask = RI_UPPER; goto do_class; case EXACTLY: { int cu, cl; // This doesn't do a multi-byte character, because a MULTIBYTECODE // would have been used for it. It does handle single-byte // characters, such as latin1. if (rex.reg_ic) { cu = MB_TOUPPER(*opnd); cl = MB_TOLOWER(*opnd); while (count < maxcount && (*scan == cu || *scan == cl)) { count++; scan++; } } else { cu = *opnd; while (count < maxcount && *scan == cu) { count++; scan++; } } break; } case MULTIBYTECODE: { int i, len, cf = 0; // Safety check (just in case 'encoding' was changed since // compiling the program). if ((len = (*mb_ptr2len)(opnd)) > 1) { if (rex.reg_ic && enc_utf8) cf = utf_fold(utf_ptr2char(opnd)); while (count < maxcount && (*mb_ptr2len)(scan) >= len) { for (i = 0; i < len; ++i) if (opnd[i] != scan[i]) break; if (i < len && (!rex.reg_ic || !enc_utf8 || utf_fold(utf_ptr2char(scan)) != cf)) break; scan += len; ++count; } } } break; case ANYOF: case ANYOF + ADD_NL: testval = TRUE; // FALLTHROUGH case ANYBUT: case ANYBUT + ADD_NL: while (count < maxcount) { int len; if (*scan == NUL) { if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) break; reg_nextline(); scan = rex.input; if (got_int) break; } else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) ++scan; else if (has_mbyte && (len = (*mb_ptr2len)(scan)) > 1) { if ((cstrchr(opnd, (*mb_ptr2char)(scan)) == NULL) == testval) break; scan += len; } else { if ((cstrchr(opnd, *scan) == NULL) == testval) break; ++scan; } ++count; } break; case NEWL: while (count < maxcount && ((*scan == NUL && rex.lnum <= rex.reg_maxline && !rex.reg_line_lbr && REG_MULTI) || (*scan == '\n' && rex.reg_line_lbr))) { count++; if (rex.reg_line_lbr) ADVANCE_REGINPUT(); else reg_nextline(); scan = rex.input; if (got_int) break; } break; default: // Oh dear. Called inappropriately. iemsg(e_corrupted_regexp_program); #ifdef DEBUG printf("Called regrepeat with op code %d\n", OP(p)); #endif break; } rex.input = scan; return (int)count; } /* * Push an item onto the regstack. * Returns pointer to new item. Returns NULL when out of memory. */ static regitem_T * regstack_push(regstate_T state, char_u *scan) { regitem_T *rp; if ((long)((unsigned)regstack.ga_len >> 10) >= p_mmp) { emsg(_(e_pattern_uses_more_memory_than_maxmempattern)); return NULL; } if (ga_grow(®stack, sizeof(regitem_T)) == FAIL) return NULL; rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len); rp->rs_state = state; rp->rs_scan = scan; regstack.ga_len += sizeof(regitem_T); return rp; } /* * Pop an item from the regstack. */ static void regstack_pop(char_u **scan) { regitem_T *rp; rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len) - 1; *scan = rp->rs_scan; regstack.ga_len -= sizeof(regitem_T); } #ifdef FEAT_RELTIME /* * Check if the timer expired, return TRUE if so. */ static int bt_did_time_out(int *timed_out) { if (*timeout_flag) { if (timed_out != NULL) { # ifdef FEAT_EVAL if (!*timed_out) ch_log(NULL, "BT regexp timed out"); # endif *timed_out = TRUE; } return TRUE; } return FALSE; } #endif /* * Save the current subexpr to "bp", so that they can be restored * later by restore_subexpr(). */ static void save_subexpr(regbehind_T *bp) { int i; // When "rex.need_clear_subexpr" is set we don't need to save the values, // only remember that this flag needs to be set again when restoring. bp->save_need_clear_subexpr = rex.need_clear_subexpr; if (rex.need_clear_subexpr) return; for (i = 0; i < NSUBEXP; ++i) { if (REG_MULTI) { bp->save_start[i].se_u.pos = rex.reg_startpos[i]; bp->save_end[i].se_u.pos = rex.reg_endpos[i]; } else { bp->save_start[i].se_u.ptr = rex.reg_startp[i]; bp->save_end[i].se_u.ptr = rex.reg_endp[i]; } } } /* * Restore the subexpr from "bp". */ static void restore_subexpr(regbehind_T *bp) { int i; // Only need to restore saved values when they are not to be cleared. rex.need_clear_subexpr = bp->save_need_clear_subexpr; if (rex.need_clear_subexpr) return; for (i = 0; i < NSUBEXP; ++i) { if (REG_MULTI) { rex.reg_startpos[i] = bp->save_start[i].se_u.pos; rex.reg_endpos[i] = bp->save_end[i].se_u.pos; } else { rex.reg_startp[i] = bp->save_start[i].se_u.ptr; rex.reg_endp[i] = bp->save_end[i].se_u.ptr; } } } /* * regmatch - main matching routine * * Conceptually the strategy is simple: Check to see whether the current node * matches, push an item onto the regstack and loop to see whether the rest * matches, and then act accordingly. In practice we make some effort to * avoid using the regstack, in particular by going through "ordinary" nodes * (that don't need to know whether the rest of the match failed) by a nested * loop. * * Returns TRUE when there is a match. Leaves rex.input and rex.lnum just after * the last matched character. * Returns FALSE when there is no match. Leaves rex.input and rex.lnum in an * undefined state! */ static int regmatch( char_u *scan, // Current node. int *timed_out UNUSED) // flag set on timeout or NULL { char_u *next; // Next node. int op; int c; regitem_T *rp; int no; int status; // one of the RA_ values: // Make "regstack" and "backpos" empty. They are allocated and freed in // bt_regexec_both() to reduce malloc()/free() calls. regstack.ga_len = 0; backpos.ga_len = 0; // Repeat until "regstack" is empty. for (;;) { // Some patterns may take a long time to match, e.g., "\([a-z]\+\)\+Q". // Allow interrupting them with CTRL-C. fast_breakcheck(); #ifdef DEBUG if (scan != NULL && regnarrate) { mch_errmsg((char *)regprop(scan)); mch_errmsg("(\n"); } #endif // Repeat for items that can be matched sequentially, without using the // regstack. for (;;) { if (got_int || scan == NULL) { status = RA_FAIL; break; } #ifdef FEAT_RELTIME if (bt_did_time_out(timed_out)) { status = RA_FAIL; break; } #endif status = RA_CONT; #ifdef DEBUG if (regnarrate) { mch_errmsg((char *)regprop(scan)); mch_errmsg("...\n"); # ifdef FEAT_SYN_HL if (re_extmatch_in != NULL) { int i; mch_errmsg(_("External submatches:\n")); for (i = 0; i < NSUBEXP; i++) { mch_errmsg(" \""); if (re_extmatch_in->matches[i] != NULL) mch_errmsg((char *)re_extmatch_in->matches[i]); mch_errmsg("\"\n"); } } # endif } #endif next = regnext(scan); op = OP(scan); // Check for character class with NL added. if (!rex.reg_line_lbr && WITH_NL(op) && REG_MULTI && *rex.input == NUL && rex.lnum <= rex.reg_maxline) { reg_nextline(); } else if (rex.reg_line_lbr && WITH_NL(op) && *rex.input == '\n') { ADVANCE_REGINPUT(); } else { if (WITH_NL(op)) op -= ADD_NL; if (has_mbyte) c = (*mb_ptr2char)(rex.input); else c = *rex.input; switch (op) { case BOL: if (rex.input != rex.line) status = RA_NOMATCH; break; case EOL: if (c != NUL) status = RA_NOMATCH; break; case RE_BOF: // We're not at the beginning of the file when below the first // line where we started, not at the start of the line or we // didn't start at the first line of the buffer. if (rex.lnum != 0 || rex.input != rex.line || (REG_MULTI && rex.reg_firstlnum > 1)) status = RA_NOMATCH; break; case RE_EOF: if (rex.lnum != rex.reg_maxline || c != NUL) status = RA_NOMATCH; break; case CURSOR: // Check if the buffer is in a window and compare the // rex.reg_win->w_cursor position to the match position. if (rex.reg_win == NULL || (rex.lnum + rex.reg_firstlnum != rex.reg_win->w_cursor.lnum) || ((colnr_T)(rex.input - rex.line) != rex.reg_win->w_cursor.col)) status = RA_NOMATCH; break; case RE_MARK: // Compare the mark position to the match position. { int mark = OPERAND(scan)[0]; int cmp = OPERAND(scan)[1]; pos_T *pos; size_t col = REG_MULTI ? rex.input - rex.line : 0; pos = getmark_buf(rex.reg_buf, mark, FALSE); // Line may have been freed, get it again. if (REG_MULTI) { rex.line = reg_getline(rex.lnum); rex.input = rex.line + col; } if (pos == NULL // mark doesn't exist || pos->lnum <= 0) // mark isn't set in reg_buf { status = RA_NOMATCH; } else { colnr_T pos_col = pos->lnum == rex.lnum + rex.reg_firstlnum && pos->col == MAXCOL ? (colnr_T)STRLEN(reg_getline( pos->lnum - rex.reg_firstlnum)) : pos->col; if ((pos->lnum == rex.lnum + rex.reg_firstlnum ? (pos_col == (colnr_T)(rex.input - rex.line) ? (cmp == '<' || cmp == '>') : (pos_col < (colnr_T)(rex.input - rex.line) ? cmp != '>' : cmp != '<')) : (pos->lnum < rex.lnum + rex.reg_firstlnum ? cmp != '>' : cmp != '<'))) status = RA_NOMATCH; } } break; case RE_VISUAL: if (!reg_match_visual()) status = RA_NOMATCH; break; case RE_LNUM: if (!REG_MULTI || !re_num_cmp((long_u)(rex.lnum + rex.reg_firstlnum), scan)) status = RA_NOMATCH; break; case RE_COL: if (!re_num_cmp((long_u)(rex.input - rex.line) + 1, scan)) status = RA_NOMATCH; break; case RE_VCOL: { win_T *wp = rex.reg_win == NULL ? curwin : rex.reg_win; linenr_T lnum = REG_MULTI ? rex.reg_firstlnum + rex.lnum : 1; long_u vcol; if (REG_MULTI && (lnum <= 0 || lnum > wp->w_buffer->b_ml.ml_line_count)) lnum = 1; vcol = (long_u)win_linetabsize(wp, lnum, rex.line, (colnr_T)(rex.input - rex.line)); if (!re_num_cmp(vcol + 1, scan)) status = RA_NOMATCH; } break; case BOW: // \<word; rex.input points to w if (c == NUL) // Can't match at end of line status = RA_NOMATCH; else if (has_mbyte) { int this_class; // Get class of current and previous char (if it exists). this_class = mb_get_class_buf(rex.input, rex.reg_buf); if (this_class <= 1) status = RA_NOMATCH; // not on a word at all else if (reg_prev_class() == this_class) status = RA_NOMATCH; // previous char is in same word } else { if (!vim_iswordc_buf(c, rex.reg_buf) || (rex.input > rex.line && vim_iswordc_buf(rex.input[-1], rex.reg_buf))) status = RA_NOMATCH; } break; case EOW: // word\>; rex.input points after d if (rex.input == rex.line) // Can't match at start of line status = RA_NOMATCH; else if (has_mbyte) { int this_class, prev_class; // Get class of current and previous char (if it exists). this_class = mb_get_class_buf(rex.input, rex.reg_buf); prev_class = reg_prev_class(); if (this_class == prev_class || prev_class == 0 || prev_class == 1) status = RA_NOMATCH; } else { if (!vim_iswordc_buf(rex.input[-1], rex.reg_buf) || (rex.input[0] != NUL && vim_iswordc_buf(c, rex.reg_buf))) status = RA_NOMATCH; } break; // Matched with EOW case ANY: // ANY does not match new lines. if (c == NUL) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case IDENT: if (!vim_isIDc(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case SIDENT: if (VIM_ISDIGIT(*rex.input) || !vim_isIDc(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case KWORD: if (!vim_iswordp_buf(rex.input, rex.reg_buf)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case SKWORD: if (VIM_ISDIGIT(*rex.input) || !vim_iswordp_buf(rex.input, rex.reg_buf)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case FNAME: if (!vim_isfilec(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case SFNAME: if (VIM_ISDIGIT(*rex.input) || !vim_isfilec(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case PRINT: if (!vim_isprintc(PTR2CHAR(rex.input))) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case SPRINT: if (VIM_ISDIGIT(*rex.input) || !vim_isprintc(PTR2CHAR(rex.input))) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case WHITE: if (!VIM_ISWHITE(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NWHITE: if (c == NUL || VIM_ISWHITE(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case DIGIT: if (!ri_digit(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NDIGIT: if (c == NUL || ri_digit(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case HEX: if (!ri_hex(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NHEX: if (c == NUL || ri_hex(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case OCTAL: if (!ri_octal(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NOCTAL: if (c == NUL || ri_octal(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case WORD: if (!ri_word(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NWORD: if (c == NUL || ri_word(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case HEAD: if (!ri_head(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NHEAD: if (c == NUL || ri_head(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case ALPHA: if (!ri_alpha(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NALPHA: if (c == NUL || ri_alpha(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case LOWER: if (!ri_lower(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NLOWER: if (c == NUL || ri_lower(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case UPPER: if (!ri_upper(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case NUPPER: if (c == NUL || ri_upper(c)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case EXACTLY: { int len; char_u *opnd; opnd = OPERAND(scan); // Inline the first byte, for speed. if (*opnd != *rex.input && (!rex.reg_ic || (!enc_utf8 && MB_TOLOWER(*opnd) != MB_TOLOWER(*rex.input)))) status = RA_NOMATCH; else if (*opnd == NUL) { // match empty string always works; happens when "~" is // empty. } else { if (opnd[1] == NUL && !(enc_utf8 && rex.reg_ic)) { len = 1; // matched a single byte above } else { // Need to match first byte again for multi-byte. len = (int)STRLEN(opnd); if (cstrncmp(opnd, rex.input, &len) != 0) status = RA_NOMATCH; } // Check for following composing character, unless %C // follows (skips over all composing chars). if (status != RA_NOMATCH && enc_utf8 && UTF_COMPOSINGLIKE(rex.input, rex.input + len) && !rex.reg_icombine && OP(next) != RE_COMPOSING) { // raaron: This code makes a composing character get // ignored, which is the correct behavior (sometimes) // for voweled Hebrew texts. status = RA_NOMATCH; } if (status != RA_NOMATCH) rex.input += len; } } break; case ANYOF: case ANYBUT: if (c == NUL) status = RA_NOMATCH; else if ((cstrchr(OPERAND(scan), c) == NULL) == (op == ANYOF)) status = RA_NOMATCH; else ADVANCE_REGINPUT(); break; case MULTIBYTECODE: if (has_mbyte) { int i, len; char_u *opnd; int opndc = 0, inpc; opnd = OPERAND(scan); // Safety check (just in case 'encoding' was changed since // compiling the program). if ((len = (*mb_ptr2len)(opnd)) < 2) { status = RA_NOMATCH; break; } if (enc_utf8) opndc = utf_ptr2char(opnd); if (enc_utf8 && utf_iscomposing(opndc)) { // When only a composing char is given match at any // position where that composing char appears. status = RA_NOMATCH; for (i = 0; rex.input[i] != NUL; i += utf_ptr2len(rex.input + i)) { inpc = utf_ptr2char(rex.input + i); if (!utf_iscomposing(inpc)) { if (i > 0) break; } else if (opndc == inpc) { // Include all following composing chars. len = i + utfc_ptr2len(rex.input + i); status = RA_MATCH; break; } } } else for (i = 0; i < len; ++i) if (opnd[i] != rex.input[i]) { status = RA_NOMATCH; break; } rex.input += len; } else status = RA_NOMATCH; break; case RE_COMPOSING: if (enc_utf8) { // Skip composing characters. while (utf_iscomposing(utf_ptr2char(rex.input))) MB_CPTR_ADV(rex.input); } break; case NOTHING: break; case BACK: { int i; backpos_T *bp; // When we run into BACK we need to check if we don't keep // looping without matching any input. The second and later // times a BACK is encountered it fails if the input is still // at the same position as the previous time. // The positions are stored in "backpos" and found by the // current value of "scan", the position in the RE program. bp = (backpos_T *)backpos.ga_data; for (i = 0; i < backpos.ga_len; ++i) if (bp[i].bp_scan == scan) break; if (i == backpos.ga_len) { // First time at this BACK, make room to store the pos. if (ga_grow(&backpos, 1) == FAIL) status = RA_FAIL; else { // get "ga_data" again, it may have changed bp = (backpos_T *)backpos.ga_data; bp[i].bp_scan = scan; ++backpos.ga_len; } } else if (reg_save_equal(&bp[i].bp_pos)) // Still at same position as last time, fail. status = RA_NOMATCH; if (status != RA_FAIL && status != RA_NOMATCH) reg_save(&bp[i].bp_pos, &backpos); } break; case MOPEN + 0: // Match start: \zs case MOPEN + 1: // \( case MOPEN + 2: case MOPEN + 3: case MOPEN + 4: case MOPEN + 5: case MOPEN + 6: case MOPEN + 7: case MOPEN + 8: case MOPEN + 9: { no = op - MOPEN; cleanup_subexpr(); rp = regstack_push(RS_MOPEN, scan); if (rp == NULL) status = RA_FAIL; else { rp->rs_no = no; save_se(&rp->rs_un.sesave, &rex.reg_startpos[no], &rex.reg_startp[no]); // We simply continue and handle the result when done. } } break; case NOPEN: // \%( case NCLOSE: // \) after \%( if (regstack_push(RS_NOPEN, scan) == NULL) status = RA_FAIL; // We simply continue and handle the result when done. break; #ifdef FEAT_SYN_HL case ZOPEN + 1: case ZOPEN + 2: case ZOPEN + 3: case ZOPEN + 4: case ZOPEN + 5: case ZOPEN + 6: case ZOPEN + 7: case ZOPEN + 8: case ZOPEN + 9: { no = op - ZOPEN; cleanup_zsubexpr(); rp = regstack_push(RS_ZOPEN, scan); if (rp == NULL) status = RA_FAIL; else { rp->rs_no = no; save_se(&rp->rs_un.sesave, ®_startzpos[no], ®_startzp[no]); // We simply continue and handle the result when done. } } break; #endif case MCLOSE + 0: // Match end: \ze case MCLOSE + 1: // \) case MCLOSE + 2: case MCLOSE + 3: case MCLOSE + 4: case MCLOSE + 5: case MCLOSE + 6: case MCLOSE + 7: case MCLOSE + 8: case MCLOSE + 9: { no = op - MCLOSE; cleanup_subexpr(); rp = regstack_push(RS_MCLOSE, scan); if (rp == NULL) status = RA_FAIL; else { rp->rs_no = no; save_se(&rp->rs_un.sesave, &rex.reg_endpos[no], &rex.reg_endp[no]); // We simply continue and handle the result when done. } } break; #ifdef FEAT_SYN_HL case ZCLOSE + 1: // \) after \z( case ZCLOSE + 2: case ZCLOSE + 3: case ZCLOSE + 4: case ZCLOSE + 5: case ZCLOSE + 6: case ZCLOSE + 7: case ZCLOSE + 8: case ZCLOSE + 9: { no = op - ZCLOSE; cleanup_zsubexpr(); rp = regstack_push(RS_ZCLOSE, scan); if (rp == NULL) status = RA_FAIL; else { rp->rs_no = no; save_se(&rp->rs_un.sesave, ®_endzpos[no], ®_endzp[no]); // We simply continue and handle the result when done. } } break; #endif case BACKREF + 1: case BACKREF + 2: case BACKREF + 3: case BACKREF + 4: case BACKREF + 5: case BACKREF + 6: case BACKREF + 7: case BACKREF + 8: case BACKREF + 9: { int len; no = op - BACKREF; cleanup_subexpr(); if (!REG_MULTI) // Single-line regexp { if (rex.reg_startp[no] == NULL || rex.reg_endp[no] == NULL) { // Backref was not set: Match an empty string. len = 0; } else { // Compare current input with back-ref in the same // line. len = (int)(rex.reg_endp[no] - rex.reg_startp[no]); if (cstrncmp(rex.reg_startp[no], rex.input, &len) != 0) status = RA_NOMATCH; } } else // Multi-line regexp { if (rex.reg_startpos[no].lnum < 0 || rex.reg_endpos[no].lnum < 0) { // Backref was not set: Match an empty string. len = 0; } else { if (rex.reg_startpos[no].lnum == rex.lnum && rex.reg_endpos[no].lnum == rex.lnum) { // Compare back-ref within the current line. len = rex.reg_endpos[no].col - rex.reg_startpos[no].col; if (cstrncmp(rex.line + rex.reg_startpos[no].col, rex.input, &len) != 0) status = RA_NOMATCH; } else { // Messy situation: Need to compare between two // lines. int r = match_with_backref( rex.reg_startpos[no].lnum, rex.reg_startpos[no].col, rex.reg_endpos[no].lnum, rex.reg_endpos[no].col, &len); if (r != RA_MATCH) status = r; } } } // Matched the backref, skip over it. rex.input += len; } break; #ifdef FEAT_SYN_HL case ZREF + 1: case ZREF + 2: case ZREF + 3: case ZREF + 4: case ZREF + 5: case ZREF + 6: case ZREF + 7: case ZREF + 8: case ZREF + 9: { int len; cleanup_zsubexpr(); no = op - ZREF; if (re_extmatch_in != NULL && re_extmatch_in->matches[no] != NULL) { len = (int)STRLEN(re_extmatch_in->matches[no]); if (cstrncmp(re_extmatch_in->matches[no], rex.input, &len) != 0) status = RA_NOMATCH; else rex.input += len; } else { // Backref was not set: Match an empty string. } } break; #endif case BRANCH: { if (OP(next) != BRANCH) // No choice. next = OPERAND(scan); // Avoid recursion. else { rp = regstack_push(RS_BRANCH, scan); if (rp == NULL) status = RA_FAIL; else status = RA_BREAK; // rest is below } } break; case BRACE_LIMITS: { if (OP(next) == BRACE_SIMPLE) { bl_minval = OPERAND_MIN(scan); bl_maxval = OPERAND_MAX(scan); } else if (OP(next) >= BRACE_COMPLEX && OP(next) < BRACE_COMPLEX + 10) { no = OP(next) - BRACE_COMPLEX; brace_min[no] = OPERAND_MIN(scan); brace_max[no] = OPERAND_MAX(scan); brace_count[no] = 0; } else { internal_error("BRACE_LIMITS"); status = RA_FAIL; } } break; case BRACE_COMPLEX + 0: case BRACE_COMPLEX + 1: case BRACE_COMPLEX + 2: case BRACE_COMPLEX + 3: case BRACE_COMPLEX + 4: case BRACE_COMPLEX + 5: case BRACE_COMPLEX + 6: case BRACE_COMPLEX + 7: case BRACE_COMPLEX + 8: case BRACE_COMPLEX + 9: { no = op - BRACE_COMPLEX; ++brace_count[no]; // If not matched enough times yet, try one more if (brace_count[no] <= (brace_min[no] <= brace_max[no] ? brace_min[no] : brace_max[no])) { rp = regstack_push(RS_BRCPLX_MORE, scan); if (rp == NULL) status = RA_FAIL; else { rp->rs_no = no; reg_save(&rp->rs_un.regsave, &backpos); next = OPERAND(scan); // We continue and handle the result when done. } break; } // If matched enough times, may try matching some more if (brace_min[no] <= brace_max[no]) { // Range is the normal way around, use longest match if (brace_count[no] <= brace_max[no]) { rp = regstack_push(RS_BRCPLX_LONG, scan); if (rp == NULL) status = RA_FAIL; else { rp->rs_no = no; reg_save(&rp->rs_un.regsave, &backpos); next = OPERAND(scan); // We continue and handle the result when done. } } } else { // Range is backwards, use shortest match first if (brace_count[no] <= brace_min[no]) { rp = regstack_push(RS_BRCPLX_SHORT, scan); if (rp == NULL) status = RA_FAIL; else { reg_save(&rp->rs_un.regsave, &backpos); // We continue and handle the result when done. } } } } break; case BRACE_SIMPLE: case STAR: case PLUS: { regstar_T rst; // Lookahead to avoid useless match attempts when we know // what character comes next. if (OP(next) == EXACTLY) { rst.nextb = *OPERAND(next); if (rex.reg_ic) { if (MB_ISUPPER(rst.nextb)) rst.nextb_ic = MB_TOLOWER(rst.nextb); else rst.nextb_ic = MB_TOUPPER(rst.nextb); } else rst.nextb_ic = rst.nextb; } else { rst.nextb = NUL; rst.nextb_ic = NUL; } if (op != BRACE_SIMPLE) { rst.minval = (op == STAR) ? 0 : 1; rst.maxval = MAX_LIMIT; } else { rst.minval = bl_minval; rst.maxval = bl_maxval; } // When maxval > minval, try matching as much as possible, up // to maxval. When maxval < minval, try matching at least the // minimal number (since the range is backwards, that's also // maxval!). rst.count = regrepeat(OPERAND(scan), rst.maxval); if (got_int) { status = RA_FAIL; break; } if (rst.minval <= rst.maxval ? rst.count >= rst.minval : rst.count >= rst.maxval) { // It could match. Prepare for trying to match what // follows. The code is below. Parameters are stored in // a regstar_T on the regstack. if ((long)((unsigned)regstack.ga_len >> 10) >= p_mmp) { emsg(_(e_pattern_uses_more_memory_than_maxmempattern)); status = RA_FAIL; } else if (ga_grow(®stack, sizeof(regstar_T)) == FAIL) status = RA_FAIL; else { regstack.ga_len += sizeof(regstar_T); rp = regstack_push(rst.minval <= rst.maxval ? RS_STAR_LONG : RS_STAR_SHORT, scan); if (rp == NULL) status = RA_FAIL; else { *(((regstar_T *)rp) - 1) = rst; status = RA_BREAK; // skip the restore bits } } } else status = RA_NOMATCH; } break; case NOMATCH: case MATCH: case SUBPAT: rp = regstack_push(RS_NOMATCH, scan); if (rp == NULL) status = RA_FAIL; else { rp->rs_no = op; reg_save(&rp->rs_un.regsave, &backpos); next = OPERAND(scan); // We continue and handle the result when done. } break; case BEHIND: case NOBEHIND: // Need a bit of room to store extra positions. if ((long)((unsigned)regstack.ga_len >> 10) >= p_mmp) { emsg(_(e_pattern_uses_more_memory_than_maxmempattern)); status = RA_FAIL; } else if (ga_grow(®stack, sizeof(regbehind_T)) == FAIL) status = RA_FAIL; else { regstack.ga_len += sizeof(regbehind_T); rp = regstack_push(RS_BEHIND1, scan); if (rp == NULL) status = RA_FAIL; else { // Need to save the subexpr to be able to restore them // when there is a match but we don't use it. save_subexpr(((regbehind_T *)rp) - 1); rp->rs_no = op; reg_save(&rp->rs_un.regsave, &backpos); // First try if what follows matches. If it does then we // check the behind match by looping. } } break; case BHPOS: if (REG_MULTI) { if (behind_pos.rs_u.pos.col != (colnr_T)(rex.input - rex.line) || behind_pos.rs_u.pos.lnum != rex.lnum) status = RA_NOMATCH; } else if (behind_pos.rs_u.ptr != rex.input) status = RA_NOMATCH; break; case NEWL: if ((c != NUL || !REG_MULTI || rex.lnum > rex.reg_maxline || rex.reg_line_lbr) && (c != '\n' || !rex.reg_line_lbr)) status = RA_NOMATCH; else if (rex.reg_line_lbr) ADVANCE_REGINPUT(); else reg_nextline(); break; case END: status = RA_MATCH; // Success! break; default: iemsg(e_corrupted_regexp_program); #ifdef DEBUG printf("Illegal op code %d\n", op); #endif status = RA_FAIL; break; } } // If we can't continue sequentially, break the inner loop. if (status != RA_CONT) break; // Continue in inner loop, advance to next item. scan = next; } // end of inner loop // If there is something on the regstack execute the code for the state. // If the state is popped then loop and use the older state. while (regstack.ga_len > 0 && status != RA_FAIL) { rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len) - 1; switch (rp->rs_state) { case RS_NOPEN: // Result is passed on as-is, simply pop the state. regstack_pop(&scan); break; case RS_MOPEN: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) restore_se(&rp->rs_un.sesave, &rex.reg_startpos[rp->rs_no], &rex.reg_startp[rp->rs_no]); regstack_pop(&scan); break; #ifdef FEAT_SYN_HL case RS_ZOPEN: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) restore_se(&rp->rs_un.sesave, ®_startzpos[rp->rs_no], ®_startzp[rp->rs_no]); regstack_pop(&scan); break; #endif case RS_MCLOSE: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) restore_se(&rp->rs_un.sesave, &rex.reg_endpos[rp->rs_no], &rex.reg_endp[rp->rs_no]); regstack_pop(&scan); break; #ifdef FEAT_SYN_HL case RS_ZCLOSE: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) restore_se(&rp->rs_un.sesave, ®_endzpos[rp->rs_no], ®_endzp[rp->rs_no]); regstack_pop(&scan); break; #endif case RS_BRANCH: if (status == RA_MATCH) // this branch matched, use it regstack_pop(&scan); else { if (status != RA_BREAK) { // After a non-matching branch: try next one. reg_restore(&rp->rs_un.regsave, &backpos); scan = rp->rs_scan; } if (scan == NULL || OP(scan) != BRANCH) { // no more branches, didn't find a match status = RA_NOMATCH; regstack_pop(&scan); } else { // Prepare to try a branch. rp->rs_scan = regnext(scan); reg_save(&rp->rs_un.regsave, &backpos); scan = OPERAND(scan); } } break; case RS_BRCPLX_MORE: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) { reg_restore(&rp->rs_un.regsave, &backpos); --brace_count[rp->rs_no]; // decrement match count } regstack_pop(&scan); break; case RS_BRCPLX_LONG: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) { // There was no match, but we did find enough matches. reg_restore(&rp->rs_un.regsave, &backpos); --brace_count[rp->rs_no]; // continue with the items after "\{}" status = RA_CONT; } regstack_pop(&scan); if (status == RA_CONT) scan = regnext(scan); break; case RS_BRCPLX_SHORT: // Pop the state. Restore pointers when there is no match. if (status == RA_NOMATCH) // There was no match, try to match one more item. reg_restore(&rp->rs_un.regsave, &backpos); regstack_pop(&scan); if (status == RA_NOMATCH) { scan = OPERAND(scan); status = RA_CONT; } break; case RS_NOMATCH: // Pop the state. If the operand matches for NOMATCH or // doesn't match for MATCH/SUBPAT, we fail. Otherwise backup, // except for SUBPAT, and continue with the next item. if (status == (rp->rs_no == NOMATCH ? RA_MATCH : RA_NOMATCH)) status = RA_NOMATCH; else { status = RA_CONT; if (rp->rs_no != SUBPAT) // zero-width reg_restore(&rp->rs_un.regsave, &backpos); } regstack_pop(&scan); if (status == RA_CONT) scan = regnext(scan); break; case RS_BEHIND1: if (status == RA_NOMATCH) { regstack_pop(&scan); regstack.ga_len -= sizeof(regbehind_T); } else { // The stuff after BEHIND/NOBEHIND matches. Now try if // the behind part does (not) match before the current // position in the input. This must be done at every // position in the input and checking if the match ends at // the current position. // save the position after the found match for next reg_save(&(((regbehind_T *)rp) - 1)->save_after, &backpos); // Start looking for a match with operand at the current // position. Go back one character until we find the // result, hitting the start of the line or the previous // line (for multi-line matching). // Set behind_pos to where the match should end, BHPOS // will match it. Save the current value. (((regbehind_T *)rp) - 1)->save_behind = behind_pos; behind_pos = rp->rs_un.regsave; rp->rs_state = RS_BEHIND2; reg_restore(&rp->rs_un.regsave, &backpos); scan = OPERAND(rp->rs_scan) + 4; } break; case RS_BEHIND2: // Looping for BEHIND / NOBEHIND match. if (status == RA_MATCH && reg_save_equal(&behind_pos)) { // found a match that ends where "next" started behind_pos = (((regbehind_T *)rp) - 1)->save_behind; if (rp->rs_no == BEHIND) reg_restore(&(((regbehind_T *)rp) - 1)->save_after, &backpos); else { // But we didn't want a match. Need to restore the // subexpr, because what follows matched, so they have // been set. status = RA_NOMATCH; restore_subexpr(((regbehind_T *)rp) - 1); } regstack_pop(&scan); regstack.ga_len -= sizeof(regbehind_T); } else { long limit; // No match or a match that doesn't end where we want it: Go // back one character. May go to previous line once. no = OK; limit = OPERAND_MIN(rp->rs_scan); if (REG_MULTI) { if (limit > 0 && ((rp->rs_un.regsave.rs_u.pos.lnum < behind_pos.rs_u.pos.lnum ? (colnr_T)STRLEN(rex.line) : behind_pos.rs_u.pos.col) - rp->rs_un.regsave.rs_u.pos.col >= limit)) no = FAIL; else if (rp->rs_un.regsave.rs_u.pos.col == 0) { if (rp->rs_un.regsave.rs_u.pos.lnum < behind_pos.rs_u.pos.lnum || reg_getline( --rp->rs_un.regsave.rs_u.pos.lnum) == NULL) no = FAIL; else { reg_restore(&rp->rs_un.regsave, &backpos); rp->rs_un.regsave.rs_u.pos.col = (colnr_T)STRLEN(rex.line); } } else { if (has_mbyte) { char_u *line = reg_getline(rp->rs_un.regsave.rs_u.pos.lnum); rp->rs_un.regsave.rs_u.pos.col -= (*mb_head_off)(line, line + rp->rs_un.regsave.rs_u.pos.col - 1) + 1; } else --rp->rs_un.regsave.rs_u.pos.col; } } else { if (rp->rs_un.regsave.rs_u.ptr == rex.line) no = FAIL; else { MB_PTR_BACK(rex.line, rp->rs_un.regsave.rs_u.ptr); if (limit > 0 && (long)(behind_pos.rs_u.ptr - rp->rs_un.regsave.rs_u.ptr) > limit) no = FAIL; } } if (no == OK) { // Advanced, prepare for finding match again. reg_restore(&rp->rs_un.regsave, &backpos); scan = OPERAND(rp->rs_scan) + 4; if (status == RA_MATCH) { // We did match, so subexpr may have been changed, // need to restore them for the next try. status = RA_NOMATCH; restore_subexpr(((regbehind_T *)rp) - 1); } } else { // Can't advance. For NOBEHIND that's a match. behind_pos = (((regbehind_T *)rp) - 1)->save_behind; if (rp->rs_no == NOBEHIND) { reg_restore(&(((regbehind_T *)rp) - 1)->save_after, &backpos); status = RA_MATCH; } else { // We do want a proper match. Need to restore the // subexpr if we had a match, because they may have // been set. if (status == RA_MATCH) { status = RA_NOMATCH; restore_subexpr(((regbehind_T *)rp) - 1); } } regstack_pop(&scan); regstack.ga_len -= sizeof(regbehind_T); } } break; case RS_STAR_LONG: case RS_STAR_SHORT: { regstar_T *rst = ((regstar_T *)rp) - 1; if (status == RA_MATCH) { regstack_pop(&scan); regstack.ga_len -= sizeof(regstar_T); break; } // Tried once already, restore input pointers. if (status != RA_BREAK) reg_restore(&rp->rs_un.regsave, &backpos); // Repeat until we found a position where it could match. for (;;) { if (status != RA_BREAK) { // Tried first position already, advance. if (rp->rs_state == RS_STAR_LONG) { // Trying for longest match, but couldn't or // didn't match -- back up one char. if (--rst->count < rst->minval) break; if (rex.input == rex.line) { // backup to last char of previous line if (rex.lnum == 0) { status = RA_NOMATCH; break; } --rex.lnum; rex.line = reg_getline(rex.lnum); // Just in case regrepeat() didn't count // right. if (rex.line == NULL) break; rex.input = rex.line + STRLEN(rex.line); fast_breakcheck(); } else MB_PTR_BACK(rex.line, rex.input); } else { // Range is backwards, use shortest match first. // Careful: maxval and minval are exchanged! // Couldn't or didn't match: try advancing one // char. if (rst->count == rst->minval || regrepeat(OPERAND(rp->rs_scan), 1L) == 0) break; ++rst->count; } if (got_int) break; } else status = RA_NOMATCH; // If it could match, try it. if (rst->nextb == NUL || *rex.input == rst->nextb || *rex.input == rst->nextb_ic) { reg_save(&rp->rs_un.regsave, &backpos); scan = regnext(rp->rs_scan); status = RA_CONT; break; } } if (status != RA_CONT) { // Failed. regstack_pop(&scan); regstack.ga_len -= sizeof(regstar_T); status = RA_NOMATCH; } } break; } // If we want to continue the inner loop or didn't pop a state // continue matching loop if (status == RA_CONT || rp == (regitem_T *) ((char *)regstack.ga_data + regstack.ga_len) - 1) break; #ifdef FEAT_RELTIME if (bt_did_time_out(timed_out)) { status = RA_FAIL; break; } #endif } // May need to continue with the inner loop, starting at "scan". if (status == RA_CONT) continue; // If the regstack is empty or something failed we are done. if (regstack.ga_len == 0 || status == RA_FAIL) { if (scan == NULL) { // We get here only if there's trouble -- normally "case END" is // the terminating point. iemsg(e_corrupted_regexp_program); #ifdef DEBUG printf("Premature EOL\n"); #endif } return (status == RA_MATCH); } } // End of loop until the regstack is empty. // NOTREACHED } /* * regtry - try match of "prog" with at rex.line["col"]. * Returns 0 for failure, number of lines contained in the match otherwise. */ static long regtry( bt_regprog_T *prog, colnr_T col, int *timed_out) // flag set on timeout or NULL { rex.input = rex.line + col; rex.need_clear_subexpr = TRUE; #ifdef FEAT_SYN_HL // Clear the external match subpointers if necessary. rex.need_clear_zsubexpr = (prog->reghasz == REX_SET); #endif if (regmatch(prog->program + 1, timed_out) == 0) return 0; cleanup_subexpr(); if (REG_MULTI) { if (rex.reg_startpos[0].lnum < 0) { rex.reg_startpos[0].lnum = 0; rex.reg_startpos[0].col = col; } if (rex.reg_endpos[0].lnum < 0) { rex.reg_endpos[0].lnum = rex.lnum; rex.reg_endpos[0].col = (int)(rex.input - rex.line); } else // Use line number of "\ze". rex.lnum = rex.reg_endpos[0].lnum; } else { if (rex.reg_startp[0] == NULL) rex.reg_startp[0] = rex.line + col; if (rex.reg_endp[0] == NULL) rex.reg_endp[0] = rex.input; } #ifdef FEAT_SYN_HL // Package any found \z(...\) matches for export. Default is none. unref_extmatch(re_extmatch_out); re_extmatch_out = NULL; if (prog->reghasz == REX_SET) { int i; cleanup_zsubexpr(); re_extmatch_out = make_extmatch(); if (re_extmatch_out == NULL) return 0; for (i = 0; i < NSUBEXP; i++) { if (REG_MULTI) { // Only accept single line matches. if (reg_startzpos[i].lnum >= 0 && reg_endzpos[i].lnum == reg_startzpos[i].lnum && reg_endzpos[i].col >= reg_startzpos[i].col) re_extmatch_out->matches[i] = vim_strnsave(reg_getline(reg_startzpos[i].lnum) + reg_startzpos[i].col, reg_endzpos[i].col - reg_startzpos[i].col); } else { if (reg_startzp[i] != NULL && reg_endzp[i] != NULL) re_extmatch_out->matches[i] = vim_strnsave(reg_startzp[i], reg_endzp[i] - reg_startzp[i]); } } } #endif return 1 + rex.lnum; } /* * Match a regexp against a string ("line" points to the string) or multiple * lines (if "line" is NULL, use reg_getline()). * Returns 0 for failure, number of lines contained in the match otherwise. */ static long bt_regexec_both( char_u *line, colnr_T startcol, // column to start looking for match int *timed_out) // flag set on timeout or NULL { bt_regprog_T *prog; char_u *s; colnr_T col = startcol; long retval = 0L; // Create "regstack" and "backpos" if they are not allocated yet. // We allocate *_INITIAL amount of bytes first and then set the grow size // to much bigger value to avoid many malloc calls in case of deep regular // expressions. if (regstack.ga_data == NULL) { // Use an item size of 1 byte, since we push different things // onto the regstack. ga_init2(®stack, 1, REGSTACK_INITIAL); (void)ga_grow(®stack, REGSTACK_INITIAL); regstack.ga_growsize = REGSTACK_INITIAL * 8; } if (backpos.ga_data == NULL) { ga_init2(&backpos, sizeof(backpos_T), BACKPOS_INITIAL); (void)ga_grow(&backpos, BACKPOS_INITIAL); backpos.ga_growsize = BACKPOS_INITIAL * 8; } if (REG_MULTI) { prog = (bt_regprog_T *)rex.reg_mmatch->regprog; line = reg_getline((linenr_T)0); rex.reg_startpos = rex.reg_mmatch->startpos; rex.reg_endpos = rex.reg_mmatch->endpos; } else { prog = (bt_regprog_T *)rex.reg_match->regprog; rex.reg_startp = rex.reg_match->startp; rex.reg_endp = rex.reg_match->endp; } // Be paranoid... if (prog == NULL || line == NULL) { iemsg(e_null_argument); goto theend; } // Check validity of program. if (prog_magic_wrong()) goto theend; // If the start column is past the maximum column: no need to try. if (rex.reg_maxcol > 0 && col >= rex.reg_maxcol) goto theend; // If pattern contains "\c" or "\C": overrule value of rex.reg_ic if (prog->regflags & RF_ICASE) rex.reg_ic = TRUE; else if (prog->regflags & RF_NOICASE) rex.reg_ic = FALSE; // If pattern contains "\Z" overrule value of rex.reg_icombine if (prog->regflags & RF_ICOMBINE) rex.reg_icombine = TRUE; // If there is a "must appear" string, look for it. if (prog->regmust != NULL) { int c; if (has_mbyte) c = (*mb_ptr2char)(prog->regmust); else c = *prog->regmust; s = line + col; // This is used very often, esp. for ":global". Use three versions of // the loop to avoid overhead of conditions. if (!rex.reg_ic && !has_mbyte) while ((s = vim_strbyte(s, c)) != NULL) { if (cstrncmp(s, prog->regmust, &prog->regmlen) == 0) break; // Found it. ++s; } else if (!rex.reg_ic || (!enc_utf8 && mb_char2len(c) > 1)) while ((s = vim_strchr(s, c)) != NULL) { if (cstrncmp(s, prog->regmust, &prog->regmlen) == 0) break; // Found it. MB_PTR_ADV(s); } else while ((s = cstrchr(s, c)) != NULL) { if (cstrncmp(s, prog->regmust, &prog->regmlen) == 0) break; // Found it. MB_PTR_ADV(s); } if (s == NULL) // Not present. goto theend; } rex.line = line; rex.lnum = 0; reg_toolong = FALSE; // Simplest case: Anchored match need be tried only once. if (prog->reganch) { int c; if (has_mbyte) c = (*mb_ptr2char)(rex.line + col); else c = rex.line[col]; if (prog->regstart == NUL || prog->regstart == c || (rex.reg_ic && (((enc_utf8 && utf_fold(prog->regstart) == utf_fold(c))) || (c < 255 && prog->regstart < 255 && MB_TOLOWER(prog->regstart) == MB_TOLOWER(c))))) retval = regtry(prog, col, timed_out); else retval = 0; } else { // Messy cases: unanchored match. while (!got_int) { if (prog->regstart != NUL) { // Skip until the char we know it must start with. // Used often, do some work to avoid call overhead. if (!rex.reg_ic && !has_mbyte) s = vim_strbyte(rex.line + col, prog->regstart); else s = cstrchr(rex.line + col, prog->regstart); if (s == NULL) { retval = 0; break; } col = (int)(s - rex.line); } // Check for maximum column to try. if (rex.reg_maxcol > 0 && col >= rex.reg_maxcol) { retval = 0; break; } retval = regtry(prog, col, timed_out); if (retval > 0) break; // if not currently on the first line, get it again if (rex.lnum != 0) { rex.lnum = 0; rex.line = reg_getline((linenr_T)0); } if (rex.line[col] == NUL) break; if (has_mbyte) col += (*mb_ptr2len)(rex.line + col); else ++col; #ifdef FEAT_RELTIME if (bt_did_time_out(timed_out)) break; #endif } } theend: // Free "reg_tofree" when it's a bit big. // Free regstack and backpos if they are bigger than their initial size. if (reg_tofreelen > 400) VIM_CLEAR(reg_tofree); if (regstack.ga_maxlen > REGSTACK_INITIAL) ga_clear(®stack); if (backpos.ga_maxlen > BACKPOS_INITIAL) ga_clear(&backpos); if (retval > 0) { // Make sure the end is never before the start. Can happen when \zs // and \ze are used. if (REG_MULTI) { lpos_T *start = &rex.reg_mmatch->startpos[0]; lpos_T *end = &rex.reg_mmatch->endpos[0]; if (end->lnum < start->lnum || (end->lnum == start->lnum && end->col < start->col)) rex.reg_mmatch->endpos[0] = rex.reg_mmatch->startpos[0]; // startpos[0] may be set by "\zs", also return the column where // the whole pattern matched. rex.reg_mmatch->rmm_matchcol = col; } else { if (rex.reg_match->endp[0] < rex.reg_match->startp[0]) rex.reg_match->endp[0] = rex.reg_match->startp[0]; // startpos[0] may be set by "\zs", also return the column where // the whole pattern matched. rex.reg_match->rm_matchcol = col; } } return retval; } /* * Match a regexp against a string. * "rmp->regprog" is a compiled regexp as returned by vim_regcomp(). * Uses curbuf for line count and 'iskeyword'. * if "line_lbr" is TRUE consider a "\n" in "line" to be a line break. * * Returns 0 for failure, number of lines contained in the match otherwise. */ static int bt_regexec_nl( regmatch_T *rmp, char_u *line, // string to match against colnr_T col, // column to start looking for match int line_lbr) { rex.reg_match = rmp; rex.reg_mmatch = NULL; rex.reg_maxline = 0; rex.reg_line_lbr = line_lbr; rex.reg_buf = curbuf; rex.reg_win = NULL; rex.reg_ic = rmp->rm_ic; rex.reg_icombine = FALSE; rex.reg_maxcol = 0; return bt_regexec_both(line, col, NULL); } /* * Match a regexp against multiple lines. * "rmp->regprog" is a compiled regexp as returned by vim_regcomp(). * Uses curbuf for line count and 'iskeyword'. * * Return zero if there is no match. Return number of lines contained in the * match otherwise. */ static long bt_regexec_multi( regmmatch_T *rmp, win_T *win, // window in which to search or NULL buf_T *buf, // buffer in which to search linenr_T lnum, // nr of line to start looking for match colnr_T col, // column to start looking for match int *timed_out) // flag set on timeout or NULL { init_regexec_multi(rmp, win, buf, lnum); return bt_regexec_both(NULL, col, timed_out); } /* * Compare a number with the operand of RE_LNUM, RE_COL or RE_VCOL. */ static int re_num_cmp(long_u val, char_u *scan) { long_u n = OPERAND_MIN(scan); if (OPERAND_CMP(scan) == '>') return val > n; if (OPERAND_CMP(scan) == '<') return val < n; return val == n; } #ifdef BT_REGEXP_DUMP /* * regdump - dump a regexp onto stdout in vaguely comprehensible form */ static void regdump(char_u *pattern, bt_regprog_T *r) { char_u *s; int op = EXACTLY; // Arbitrary non-END op. char_u *next; char_u *end = NULL; FILE *f; #ifdef BT_REGEXP_LOG f = fopen("bt_regexp_log.log", "a"); #else f = stdout; #endif if (f == NULL) return; fprintf(f, "-------------------------------------\n\r\nregcomp(%s):\r\n", pattern); s = r->program + 1; // Loop until we find the END that isn't before a referred next (an END // can also appear in a NOMATCH operand). while (op != END || s <= end) { op = OP(s); fprintf(f, "%2d%s", (int)(s - r->program), regprop(s)); // Where, what. next = regnext(s); if (next == NULL) // Next ptr. fprintf(f, "(0)"); else fprintf(f, "(%d)", (int)((s - r->program) + (next - s))); if (end < next) end = next; if (op == BRACE_LIMITS) { // Two ints fprintf(f, " minval %ld, maxval %ld", OPERAND_MIN(s), OPERAND_MAX(s)); s += 8; } else if (op == BEHIND || op == NOBEHIND) { // one int fprintf(f, " count %ld", OPERAND_MIN(s)); s += 4; } else if (op == RE_LNUM || op == RE_COL || op == RE_VCOL) { // one int plus comparator fprintf(f, " count %ld", OPERAND_MIN(s)); s += 5; } s += 3; if (op == ANYOF || op == ANYOF + ADD_NL || op == ANYBUT || op == ANYBUT + ADD_NL || op == EXACTLY) { // Literal string, where present. fprintf(f, "\nxxxxxxxxx\n"); while (*s != NUL) fprintf(f, "%c", *s++); fprintf(f, "\nxxxxxxxxx\n"); s++; } fprintf(f, "\r\n"); } // Header fields of interest. if (r->regstart != NUL) fprintf(f, "start `%s' 0x%x; ", r->regstart < 256 ? (char *)transchar(r->regstart) : "multibyte", r->regstart); if (r->reganch) fprintf(f, "anchored; "); if (r->regmust != NULL) fprintf(f, "must have \"%s\"", r->regmust); fprintf(f, "\r\n"); #ifdef BT_REGEXP_LOG fclose(f); #endif } #endif // BT_REGEXP_DUMP #ifdef DEBUG /* * regprop - printable representation of opcode */ static char_u * regprop(char_u *op) { char *p; static char buf[50]; STRCPY(buf, ":"); switch ((int) OP(op)) { case BOL: p = "BOL"; break; case EOL: p = "EOL"; break; case RE_BOF: p = "BOF"; break; case RE_EOF: p = "EOF"; break; case CURSOR: p = "CURSOR"; break; case RE_VISUAL: p = "RE_VISUAL"; break; case RE_LNUM: p = "RE_LNUM"; break; case RE_MARK: p = "RE_MARK"; break; case RE_COL: p = "RE_COL"; break; case RE_VCOL: p = "RE_VCOL"; break; case BOW: p = "BOW"; break; case EOW: p = "EOW"; break; case ANY: p = "ANY"; break; case ANY + ADD_NL: p = "ANY+NL"; break; case ANYOF: p = "ANYOF"; break; case ANYOF + ADD_NL: p = "ANYOF+NL"; break; case ANYBUT: p = "ANYBUT"; break; case ANYBUT + ADD_NL: p = "ANYBUT+NL"; break; case IDENT: p = "IDENT"; break; case IDENT + ADD_NL: p = "IDENT+NL"; break; case SIDENT: p = "SIDENT"; break; case SIDENT + ADD_NL: p = "SIDENT+NL"; break; case KWORD: p = "KWORD"; break; case KWORD + ADD_NL: p = "KWORD+NL"; break; case SKWORD: p = "SKWORD"; break; case SKWORD + ADD_NL: p = "SKWORD+NL"; break; case FNAME: p = "FNAME"; break; case FNAME + ADD_NL: p = "FNAME+NL"; break; case SFNAME: p = "SFNAME"; break; case SFNAME + ADD_NL: p = "SFNAME+NL"; break; case PRINT: p = "PRINT"; break; case PRINT + ADD_NL: p = "PRINT+NL"; break; case SPRINT: p = "SPRINT"; break; case SPRINT + ADD_NL: p = "SPRINT+NL"; break; case WHITE: p = "WHITE"; break; case WHITE + ADD_NL: p = "WHITE+NL"; break; case NWHITE: p = "NWHITE"; break; case NWHITE + ADD_NL: p = "NWHITE+NL"; break; case DIGIT: p = "DIGIT"; break; case DIGIT + ADD_NL: p = "DIGIT+NL"; break; case NDIGIT: p = "NDIGIT"; break; case NDIGIT + ADD_NL: p = "NDIGIT+NL"; break; case HEX: p = "HEX"; break; case HEX + ADD_NL: p = "HEX+NL"; break; case NHEX: p = "NHEX"; break; case NHEX + ADD_NL: p = "NHEX+NL"; break; case OCTAL: p = "OCTAL"; break; case OCTAL + ADD_NL: p = "OCTAL+NL"; break; case NOCTAL: p = "NOCTAL"; break; case NOCTAL + ADD_NL: p = "NOCTAL+NL"; break; case WORD: p = "WORD"; break; case WORD + ADD_NL: p = "WORD+NL"; break; case NWORD: p = "NWORD"; break; case NWORD + ADD_NL: p = "NWORD+NL"; break; case HEAD: p = "HEAD"; break; case HEAD + ADD_NL: p = "HEAD+NL"; break; case NHEAD: p = "NHEAD"; break; case NHEAD + ADD_NL: p = "NHEAD+NL"; break; case ALPHA: p = "ALPHA"; break; case ALPHA + ADD_NL: p = "ALPHA+NL"; break; case NALPHA: p = "NALPHA"; break; case NALPHA + ADD_NL: p = "NALPHA+NL"; break; case LOWER: p = "LOWER"; break; case LOWER + ADD_NL: p = "LOWER+NL"; break; case NLOWER: p = "NLOWER"; break; case NLOWER + ADD_NL: p = "NLOWER+NL"; break; case UPPER: p = "UPPER"; break; case UPPER + ADD_NL: p = "UPPER+NL"; break; case NUPPER: p = "NUPPER"; break; case NUPPER + ADD_NL: p = "NUPPER+NL"; break; case BRANCH: p = "BRANCH"; break; case EXACTLY: p = "EXACTLY"; break; case NOTHING: p = "NOTHING"; break; case BACK: p = "BACK"; break; case END: p = "END"; break; case MOPEN + 0: p = "MATCH START"; break; case MOPEN + 1: case MOPEN + 2: case MOPEN + 3: case MOPEN + 4: case MOPEN + 5: case MOPEN + 6: case MOPEN + 7: case MOPEN + 8: case MOPEN + 9: sprintf(buf + STRLEN(buf), "MOPEN%d", OP(op) - MOPEN); p = NULL; break; case MCLOSE + 0: p = "MATCH END"; break; case MCLOSE + 1: case MCLOSE + 2: case MCLOSE + 3: case MCLOSE + 4: case MCLOSE + 5: case MCLOSE + 6: case MCLOSE + 7: case MCLOSE + 8: case MCLOSE + 9: sprintf(buf + STRLEN(buf), "MCLOSE%d", OP(op) - MCLOSE); p = NULL; break; case BACKREF + 1: case BACKREF + 2: case BACKREF + 3: case BACKREF + 4: case BACKREF + 5: case BACKREF + 6: case BACKREF + 7: case BACKREF + 8: case BACKREF + 9: sprintf(buf + STRLEN(buf), "BACKREF%d", OP(op) - BACKREF); p = NULL; break; case NOPEN: p = "NOPEN"; break; case NCLOSE: p = "NCLOSE"; break; #ifdef FEAT_SYN_HL case ZOPEN + 1: case ZOPEN + 2: case ZOPEN + 3: case ZOPEN + 4: case ZOPEN + 5: case ZOPEN + 6: case ZOPEN + 7: case ZOPEN + 8: case ZOPEN + 9: sprintf(buf + STRLEN(buf), "ZOPEN%d", OP(op) - ZOPEN); p = NULL; break; case ZCLOSE + 1: case ZCLOSE + 2: case ZCLOSE + 3: case ZCLOSE + 4: case ZCLOSE + 5: case ZCLOSE + 6: case ZCLOSE + 7: case ZCLOSE + 8: case ZCLOSE + 9: sprintf(buf + STRLEN(buf), "ZCLOSE%d", OP(op) - ZCLOSE); p = NULL; break; case ZREF + 1: case ZREF + 2: case ZREF + 3: case ZREF + 4: case ZREF + 5: case ZREF + 6: case ZREF + 7: case ZREF + 8: case ZREF + 9: sprintf(buf + STRLEN(buf), "ZREF%d", OP(op) - ZREF); p = NULL; break; #endif case STAR: p = "STAR"; break; case PLUS: p = "PLUS"; break; case NOMATCH: p = "NOMATCH"; break; case MATCH: p = "MATCH"; break; case BEHIND: p = "BEHIND"; break; case NOBEHIND: p = "NOBEHIND"; break; case SUBPAT: p = "SUBPAT"; break; case BRACE_LIMITS: p = "BRACE_LIMITS"; break; case BRACE_SIMPLE: p = "BRACE_SIMPLE"; break; case BRACE_COMPLEX + 0: case BRACE_COMPLEX + 1: case BRACE_COMPLEX + 2: case BRACE_COMPLEX + 3: case BRACE_COMPLEX + 4: case BRACE_COMPLEX + 5: case BRACE_COMPLEX + 6: case BRACE_COMPLEX + 7: case BRACE_COMPLEX + 8: case BRACE_COMPLEX + 9: sprintf(buf + STRLEN(buf), "BRACE_COMPLEX%d", OP(op) - BRACE_COMPLEX); p = NULL; break; case MULTIBYTECODE: p = "MULTIBYTECODE"; break; case NEWL: p = "NEWL"; break; default: sprintf(buf + STRLEN(buf), "corrupt %d", OP(op)); p = NULL; break; } if (p != NULL) STRCAT(buf, p); return (char_u *)buf; } #endif // DEBUG