Mercurial > vim
view src/regexp_nfa.c @ 8518:24ac80377d86 v7.4.1549
commit https://github.com/vim/vim/commit/c835293d54c223627c7d4516ee273c21a3506fa1
Author: Bram Moolenaar <Bram@vim.org>
Date: Sat Mar 12 20:15:21 2016 +0100
patch 7.4.1549
Problem: Test for syntax attributes fails in Win32 GUI.
Solution: Use an existing font name.
author | Christian Brabandt <cb@256bit.org> |
---|---|
date | Sat, 12 Mar 2016 20:30:04 +0100 |
parents | b6b4f354df23 |
children | f196308a2813 |
line wrap: on
line source
/* vi:set ts=8 sts=4 sw=4: * * NFA regular expression implementation. * * This file is included in "regexp.c". */ /* * Logging of NFA engine. * * The NFA engine can write four log files: * - Error log: Contains NFA engine's fatal errors. * - Dump log: Contains compiled NFA state machine's information. * - Run log: Contains information of matching procedure. * - Debug log: Contains detailed information of matching procedure. Can be * disabled by undefining NFA_REGEXP_DEBUG_LOG. * The first one can also be used without debug mode. * The last three are enabled when compiled as debug mode and individually * disabled by commenting them out. * The log files can get quite big! * Do disable all of this when compiling Vim for debugging, undefine DEBUG in * regexp.c */ #ifdef DEBUG # define NFA_REGEXP_ERROR_LOG "nfa_regexp_error.log" # define ENABLE_LOG # define NFA_REGEXP_DUMP_LOG "nfa_regexp_dump.log" # define NFA_REGEXP_RUN_LOG "nfa_regexp_run.log" # define NFA_REGEXP_DEBUG_LOG "nfa_regexp_debug.log" #endif /* Added to NFA_ANY - NFA_NUPPER_IC to include a NL. */ #define NFA_ADD_NL 31 enum { NFA_SPLIT = -1024, NFA_MATCH, NFA_EMPTY, /* matches 0-length */ NFA_START_COLL, /* [abc] start */ NFA_END_COLL, /* [abc] end */ NFA_START_NEG_COLL, /* [^abc] start */ NFA_END_NEG_COLL, /* [^abc] end (postfix only) */ NFA_RANGE, /* range of the two previous items * (postfix only) */ NFA_RANGE_MIN, /* low end of a range */ NFA_RANGE_MAX, /* high end of a range */ NFA_CONCAT, /* concatenate two previous items (postfix * only) */ NFA_OR, /* \| (postfix only) */ NFA_STAR, /* greedy * (posfix only) */ NFA_STAR_NONGREEDY, /* non-greedy * (postfix only) */ NFA_QUEST, /* greedy \? (postfix only) */ NFA_QUEST_NONGREEDY, /* non-greedy \? (postfix only) */ NFA_BOL, /* ^ Begin line */ NFA_EOL, /* $ End line */ NFA_BOW, /* \< Begin word */ NFA_EOW, /* \> End word */ NFA_BOF, /* \%^ Begin file */ NFA_EOF, /* \%$ End file */ NFA_NEWL, NFA_ZSTART, /* Used for \zs */ NFA_ZEND, /* Used for \ze */ NFA_NOPEN, /* Start of subexpression marked with \%( */ NFA_NCLOSE, /* End of subexpr. marked with \%( ... \) */ NFA_START_INVISIBLE, NFA_START_INVISIBLE_FIRST, NFA_START_INVISIBLE_NEG, NFA_START_INVISIBLE_NEG_FIRST, NFA_START_INVISIBLE_BEFORE, NFA_START_INVISIBLE_BEFORE_FIRST, NFA_START_INVISIBLE_BEFORE_NEG, NFA_START_INVISIBLE_BEFORE_NEG_FIRST, NFA_START_PATTERN, NFA_END_INVISIBLE, NFA_END_INVISIBLE_NEG, NFA_END_PATTERN, NFA_COMPOSING, /* Next nodes in NFA are part of the composing multibyte char */ NFA_END_COMPOSING, /* End of a composing char in the NFA */ NFA_ANY_COMPOSING, /* \%C: Any composing characters. */ NFA_OPT_CHARS, /* \%[abc] */ /* The following are used only in the postfix form, not in the NFA */ NFA_PREV_ATOM_NO_WIDTH, /* Used for \@= */ NFA_PREV_ATOM_NO_WIDTH_NEG, /* Used for \@! */ NFA_PREV_ATOM_JUST_BEFORE, /* Used for \@<= */ NFA_PREV_ATOM_JUST_BEFORE_NEG, /* Used for \@<! */ NFA_PREV_ATOM_LIKE_PATTERN, /* Used for \@> */ NFA_BACKREF1, /* \1 */ NFA_BACKREF2, /* \2 */ NFA_BACKREF3, /* \3 */ NFA_BACKREF4, /* \4 */ NFA_BACKREF5, /* \5 */ NFA_BACKREF6, /* \6 */ NFA_BACKREF7, /* \7 */ NFA_BACKREF8, /* \8 */ NFA_BACKREF9, /* \9 */ #ifdef FEAT_SYN_HL NFA_ZREF1, /* \z1 */ NFA_ZREF2, /* \z2 */ NFA_ZREF3, /* \z3 */ NFA_ZREF4, /* \z4 */ NFA_ZREF5, /* \z5 */ NFA_ZREF6, /* \z6 */ NFA_ZREF7, /* \z7 */ NFA_ZREF8, /* \z8 */ NFA_ZREF9, /* \z9 */ #endif NFA_SKIP, /* Skip characters */ NFA_MOPEN, NFA_MOPEN1, NFA_MOPEN2, NFA_MOPEN3, NFA_MOPEN4, NFA_MOPEN5, NFA_MOPEN6, NFA_MOPEN7, NFA_MOPEN8, NFA_MOPEN9, NFA_MCLOSE, NFA_MCLOSE1, NFA_MCLOSE2, NFA_MCLOSE3, NFA_MCLOSE4, NFA_MCLOSE5, NFA_MCLOSE6, NFA_MCLOSE7, NFA_MCLOSE8, NFA_MCLOSE9, #ifdef FEAT_SYN_HL NFA_ZOPEN, NFA_ZOPEN1, NFA_ZOPEN2, NFA_ZOPEN3, NFA_ZOPEN4, NFA_ZOPEN5, NFA_ZOPEN6, NFA_ZOPEN7, NFA_ZOPEN8, NFA_ZOPEN9, NFA_ZCLOSE, NFA_ZCLOSE1, NFA_ZCLOSE2, NFA_ZCLOSE3, NFA_ZCLOSE4, NFA_ZCLOSE5, NFA_ZCLOSE6, NFA_ZCLOSE7, NFA_ZCLOSE8, NFA_ZCLOSE9, #endif /* NFA_FIRST_NL */ NFA_ANY, /* Match any one character. */ NFA_IDENT, /* Match identifier char */ NFA_SIDENT, /* Match identifier char but no digit */ NFA_KWORD, /* Match keyword char */ NFA_SKWORD, /* Match word char but no digit */ NFA_FNAME, /* Match file name char */ NFA_SFNAME, /* Match file name char but no digit */ NFA_PRINT, /* Match printable char */ NFA_SPRINT, /* Match printable char but no digit */ NFA_WHITE, /* Match whitespace char */ NFA_NWHITE, /* Match non-whitespace char */ NFA_DIGIT, /* Match digit char */ NFA_NDIGIT, /* Match non-digit char */ NFA_HEX, /* Match hex char */ NFA_NHEX, /* Match non-hex char */ NFA_OCTAL, /* Match octal char */ NFA_NOCTAL, /* Match non-octal char */ NFA_WORD, /* Match word char */ NFA_NWORD, /* Match non-word char */ NFA_HEAD, /* Match head char */ NFA_NHEAD, /* Match non-head char */ NFA_ALPHA, /* Match alpha char */ NFA_NALPHA, /* Match non-alpha char */ NFA_LOWER, /* Match lowercase char */ NFA_NLOWER, /* Match non-lowercase char */ NFA_UPPER, /* Match uppercase char */ NFA_NUPPER, /* Match non-uppercase char */ NFA_LOWER_IC, /* Match [a-z] */ NFA_NLOWER_IC, /* Match [^a-z] */ NFA_UPPER_IC, /* Match [A-Z] */ NFA_NUPPER_IC, /* Match [^A-Z] */ NFA_FIRST_NL = NFA_ANY + NFA_ADD_NL, NFA_LAST_NL = NFA_NUPPER_IC + NFA_ADD_NL, NFA_CURSOR, /* Match cursor pos */ NFA_LNUM, /* Match line number */ NFA_LNUM_GT, /* Match > line number */ NFA_LNUM_LT, /* Match < line number */ NFA_COL, /* Match cursor column */ NFA_COL_GT, /* Match > cursor column */ NFA_COL_LT, /* Match < cursor column */ NFA_VCOL, /* Match cursor virtual column */ NFA_VCOL_GT, /* Match > cursor virtual column */ NFA_VCOL_LT, /* Match < cursor virtual column */ NFA_MARK, /* Match mark */ NFA_MARK_GT, /* Match > mark */ NFA_MARK_LT, /* Match < mark */ NFA_VISUAL, /* Match Visual area */ /* Character classes [:alnum:] etc */ NFA_CLASS_ALNUM, NFA_CLASS_ALPHA, NFA_CLASS_BLANK, NFA_CLASS_CNTRL, NFA_CLASS_DIGIT, NFA_CLASS_GRAPH, NFA_CLASS_LOWER, NFA_CLASS_PRINT, NFA_CLASS_PUNCT, NFA_CLASS_SPACE, NFA_CLASS_UPPER, NFA_CLASS_XDIGIT, NFA_CLASS_TAB, NFA_CLASS_RETURN, NFA_CLASS_BACKSPACE, NFA_CLASS_ESCAPE }; /* Keep in sync with classchars. */ static int nfa_classcodes[] = { NFA_ANY, NFA_IDENT, NFA_SIDENT, NFA_KWORD,NFA_SKWORD, NFA_FNAME, NFA_SFNAME, NFA_PRINT, NFA_SPRINT, NFA_WHITE, NFA_NWHITE, NFA_DIGIT, NFA_NDIGIT, NFA_HEX, NFA_NHEX, NFA_OCTAL, NFA_NOCTAL, NFA_WORD, NFA_NWORD, NFA_HEAD, NFA_NHEAD, NFA_ALPHA, NFA_NALPHA, NFA_LOWER, NFA_NLOWER, NFA_UPPER, NFA_NUPPER }; static char_u e_nul_found[] = N_("E865: (NFA) Regexp end encountered prematurely"); static char_u e_misplaced[] = N_("E866: (NFA regexp) Misplaced %c"); static char_u e_ill_char_class[] = N_("E877: (NFA regexp) Invalid character class: %ld"); /* re_flags passed to nfa_regcomp() */ static int nfa_re_flags; /* NFA regexp \ze operator encountered. */ static int nfa_has_zend; /* NFA regexp \1 .. \9 encountered. */ static int nfa_has_backref; #ifdef FEAT_SYN_HL /* NFA regexp has \z( ), set zsubexpr. */ static int nfa_has_zsubexpr; #endif /* Number of sub expressions actually being used during execution. 1 if only * the whole match (subexpr 0) is used. */ static int nfa_nsubexpr; static int *post_start; /* holds the postfix form of r.e. */ static int *post_end; static int *post_ptr; static int nstate; /* Number of states in the NFA. Also used when * executing. */ static int istate; /* Index in the state vector, used in alloc_state() */ /* If not NULL match must end at this position */ static save_se_T *nfa_endp = NULL; /* listid is global, so that it increases on recursive calls to * nfa_regmatch(), which means we don't have to clear the lastlist field of * all the states. */ static int nfa_listid; static int nfa_alt_listid; /* 0 for first call to nfa_regmatch(), 1 for recursive call. */ static int nfa_ll_index = 0; static int nfa_regcomp_start(char_u *expr, int re_flags); static int nfa_get_reganch(nfa_state_T *start, int depth); static int nfa_get_regstart(nfa_state_T *start, int depth); static char_u *nfa_get_match_text(nfa_state_T *start); static int realloc_post_list(void); static int nfa_recognize_char_class(char_u *start, char_u *end, int extra_newl); static int nfa_emit_equi_class(int c); static int nfa_regatom(void); static int nfa_regpiece(void); static int nfa_regconcat(void); static int nfa_regbranch(void); static int nfa_reg(int paren); #ifdef DEBUG static void nfa_set_code(int c); static void nfa_postfix_dump(char_u *expr, int retval); static void nfa_print_state(FILE *debugf, nfa_state_T *state); static void nfa_print_state2(FILE *debugf, nfa_state_T *state, garray_T *indent); static void nfa_dump(nfa_regprog_T *prog); #endif static int *re2post(void); static nfa_state_T *alloc_state(int c, nfa_state_T *out, nfa_state_T *out1); static void st_error(int *postfix, int *end, int *p); static int nfa_max_width(nfa_state_T *startstate, int depth); static nfa_state_T *post2nfa(int *postfix, int *end, int nfa_calc_size); static void nfa_postprocess(nfa_regprog_T *prog); static int check_char_class(int class, int c); static void nfa_save_listids(nfa_regprog_T *prog, int *list); static void nfa_restore_listids(nfa_regprog_T *prog, int *list); static int nfa_re_num_cmp(long_u val, int op, long_u pos); static long nfa_regtry(nfa_regprog_T *prog, colnr_T col, proftime_T *tm); static long nfa_regexec_both(char_u *line, colnr_T col, proftime_T *tm); static regprog_T *nfa_regcomp(char_u *expr, int re_flags); static void nfa_regfree(regprog_T *prog); static int nfa_regexec_nl(regmatch_T *rmp, char_u *line, colnr_T col, int line_lbr); static long nfa_regexec_multi(regmmatch_T *rmp, win_T *win, buf_T *buf, linenr_T lnum, colnr_T col, proftime_T *tm); static int match_follows(nfa_state_T *startstate, int depth); static int failure_chance(nfa_state_T *state, int depth); /* helper functions used when doing re2post() ... regatom() parsing */ #define EMIT(c) do { \ if (post_ptr >= post_end && realloc_post_list() == FAIL) \ return FAIL; \ *post_ptr++ = c; \ } while (0) /* * Initialize internal variables before NFA compilation. * Return OK on success, FAIL otherwise. */ static int nfa_regcomp_start( char_u *expr, int re_flags) /* see vim_regcomp() */ { size_t postfix_size; int nstate_max; nstate = 0; istate = 0; /* A reasonable estimation for maximum size */ nstate_max = (int)(STRLEN(expr) + 1) * 25; /* Some items blow up in size, such as [A-z]. Add more space for that. * When it is still not enough realloc_post_list() will be used. */ nstate_max += 1000; /* Size for postfix representation of expr. */ postfix_size = sizeof(int) * nstate_max; post_start = (int *)lalloc(postfix_size, TRUE); if (post_start == NULL) return FAIL; post_ptr = post_start; post_end = post_start + nstate_max; nfa_has_zend = FALSE; nfa_has_backref = FALSE; /* shared with BT engine */ regcomp_start(expr, re_flags); return OK; } /* * Figure out if the NFA state list starts with an anchor, must match at start * of the line. */ static int nfa_get_reganch(nfa_state_T *start, int depth) { nfa_state_T *p = start; if (depth > 4) return 0; while (p != NULL) { switch (p->c) { case NFA_BOL: case NFA_BOF: return 1; /* yes! */ case NFA_ZSTART: case NFA_ZEND: case NFA_CURSOR: case NFA_VISUAL: case NFA_MOPEN: case NFA_MOPEN1: case NFA_MOPEN2: case NFA_MOPEN3: case NFA_MOPEN4: case NFA_MOPEN5: case NFA_MOPEN6: case NFA_MOPEN7: case NFA_MOPEN8: case NFA_MOPEN9: case NFA_NOPEN: #ifdef FEAT_SYN_HL case NFA_ZOPEN: case NFA_ZOPEN1: case NFA_ZOPEN2: case NFA_ZOPEN3: case NFA_ZOPEN4: case NFA_ZOPEN5: case NFA_ZOPEN6: case NFA_ZOPEN7: case NFA_ZOPEN8: case NFA_ZOPEN9: #endif p = p->out; break; case NFA_SPLIT: return nfa_get_reganch(p->out, depth + 1) && nfa_get_reganch(p->out1, depth + 1); default: return 0; /* noooo */ } } return 0; } /* * Figure out if the NFA state list starts with a character which must match * at start of the match. */ static int nfa_get_regstart(nfa_state_T *start, int depth) { nfa_state_T *p = start; if (depth > 4) return 0; while (p != NULL) { switch (p->c) { /* all kinds of zero-width matches */ case NFA_BOL: case NFA_BOF: case NFA_BOW: case NFA_EOW: case NFA_ZSTART: case NFA_ZEND: case NFA_CURSOR: case NFA_VISUAL: case NFA_LNUM: case NFA_LNUM_GT: case NFA_LNUM_LT: case NFA_COL: case NFA_COL_GT: case NFA_COL_LT: case NFA_VCOL: case NFA_VCOL_GT: case NFA_VCOL_LT: case NFA_MARK: case NFA_MARK_GT: case NFA_MARK_LT: case NFA_MOPEN: case NFA_MOPEN1: case NFA_MOPEN2: case NFA_MOPEN3: case NFA_MOPEN4: case NFA_MOPEN5: case NFA_MOPEN6: case NFA_MOPEN7: case NFA_MOPEN8: case NFA_MOPEN9: case NFA_NOPEN: #ifdef FEAT_SYN_HL case NFA_ZOPEN: case NFA_ZOPEN1: case NFA_ZOPEN2: case NFA_ZOPEN3: case NFA_ZOPEN4: case NFA_ZOPEN5: case NFA_ZOPEN6: case NFA_ZOPEN7: case NFA_ZOPEN8: case NFA_ZOPEN9: #endif p = p->out; break; case NFA_SPLIT: { int c1 = nfa_get_regstart(p->out, depth + 1); int c2 = nfa_get_regstart(p->out1, depth + 1); if (c1 == c2) return c1; /* yes! */ return 0; } default: if (p->c > 0) return p->c; /* yes! */ return 0; } } return 0; } /* * Figure out if the NFA state list contains just literal text and nothing * else. If so return a string in allocated memory with what must match after * regstart. Otherwise return NULL. */ static char_u * nfa_get_match_text(nfa_state_T *start) { nfa_state_T *p = start; int len = 0; char_u *ret; char_u *s; if (p->c != NFA_MOPEN) return NULL; /* just in case */ p = p->out; while (p->c > 0) { len += MB_CHAR2LEN(p->c); p = p->out; } if (p->c != NFA_MCLOSE || p->out->c != NFA_MATCH) return NULL; ret = alloc(len); if (ret != NULL) { p = start->out->out; /* skip first char, it goes into regstart */ s = ret; while (p->c > 0) { #ifdef FEAT_MBYTE if (has_mbyte) s += (*mb_char2bytes)(p->c, s); else #endif *s++ = p->c; p = p->out; } *s = NUL; } return ret; } /* * Allocate more space for post_start. Called when * running above the estimated number of states. */ static int realloc_post_list(void) { int nstate_max = (int)(post_end - post_start); int new_max = nstate_max + 1000; int *new_start; int *old_start; new_start = (int *)lalloc(new_max * sizeof(int), TRUE); if (new_start == NULL) return FAIL; mch_memmove(new_start, post_start, nstate_max * sizeof(int)); old_start = post_start; post_start = new_start; post_ptr = new_start + (post_ptr - old_start); post_end = post_start + new_max; vim_free(old_start); return OK; } /* * Search between "start" and "end" and try to recognize a * character class in expanded form. For example [0-9]. * On success, return the id the character class to be emitted. * On failure, return 0 (=FAIL) * Start points to the first char of the range, while end should point * to the closing brace. * Keep in mind that 'ignorecase' applies at execution time, thus [a-z] may * need to be interpreted as [a-zA-Z]. */ static int nfa_recognize_char_class(char_u *start, char_u *end, int extra_newl) { # define CLASS_not 0x80 # define CLASS_af 0x40 # define CLASS_AF 0x20 # define CLASS_az 0x10 # define CLASS_AZ 0x08 # define CLASS_o7 0x04 # define CLASS_o9 0x02 # define CLASS_underscore 0x01 int newl = FALSE; char_u *p; int config = 0; if (extra_newl == TRUE) newl = TRUE; if (*end != ']') return FAIL; p = start; if (*p == '^') { config |= CLASS_not; p++; } while (p < end) { if (p + 2 < end && *(p + 1) == '-') { switch (*p) { case '0': if (*(p + 2) == '9') { config |= CLASS_o9; break; } else if (*(p + 2) == '7') { config |= CLASS_o7; break; } case 'a': if (*(p + 2) == 'z') { config |= CLASS_az; break; } else if (*(p + 2) == 'f') { config |= CLASS_af; break; } case 'A': if (*(p + 2) == 'Z') { config |= CLASS_AZ; break; } else if (*(p + 2) == 'F') { config |= CLASS_AF; break; } /* FALLTHROUGH */ default: return FAIL; } p += 3; } else if (p + 1 < end && *p == '\\' && *(p + 1) == 'n') { newl = TRUE; p += 2; } else if (*p == '_') { config |= CLASS_underscore; p ++; } else if (*p == '\n') { newl = TRUE; p ++; } else return FAIL; } /* while (p < end) */ if (p != end) return FAIL; if (newl == TRUE) extra_newl = NFA_ADD_NL; switch (config) { case CLASS_o9: return extra_newl + NFA_DIGIT; case CLASS_not | CLASS_o9: return extra_newl + NFA_NDIGIT; case CLASS_af | CLASS_AF | CLASS_o9: return extra_newl + NFA_HEX; case CLASS_not | CLASS_af | CLASS_AF | CLASS_o9: return extra_newl + NFA_NHEX; case CLASS_o7: return extra_newl + NFA_OCTAL; case CLASS_not | CLASS_o7: return extra_newl + NFA_NOCTAL; case CLASS_az | CLASS_AZ | CLASS_o9 | CLASS_underscore: return extra_newl + NFA_WORD; case CLASS_not | CLASS_az | CLASS_AZ | CLASS_o9 | CLASS_underscore: return extra_newl + NFA_NWORD; case CLASS_az | CLASS_AZ | CLASS_underscore: return extra_newl + NFA_HEAD; case CLASS_not | CLASS_az | CLASS_AZ | CLASS_underscore: return extra_newl + NFA_NHEAD; case CLASS_az | CLASS_AZ: return extra_newl + NFA_ALPHA; case CLASS_not | CLASS_az | CLASS_AZ: return extra_newl + NFA_NALPHA; case CLASS_az: return extra_newl + NFA_LOWER_IC; case CLASS_not | CLASS_az: return extra_newl + NFA_NLOWER_IC; case CLASS_AZ: return extra_newl + NFA_UPPER_IC; case CLASS_not | CLASS_AZ: return extra_newl + NFA_NUPPER_IC; } return FAIL; } /* * Produce the bytes for equivalence class "c". * Currently only handles latin1, latin9 and utf-8. * Emits bytes in postfix notation: 'a,b,NFA_OR,c,NFA_OR' is * equivalent to 'a OR b OR c' * * NOTE! When changing this function, also update reg_equi_class() */ static int nfa_emit_equi_class(int c) { #define EMIT2(c) EMIT(c); EMIT(NFA_CONCAT); #ifdef FEAT_MBYTE # define EMITMBC(c) EMIT(c); EMIT(NFA_CONCAT); #else # define EMITMBC(c) #endif #ifdef FEAT_MBYTE if (enc_utf8 || STRCMP(p_enc, "latin1") == 0 || STRCMP(p_enc, "iso-8859-15") == 0) #endif { switch (c) { case 'A': case 0300: case 0301: case 0302: case 0303: case 0304: case 0305: CASEMBC(0x100) CASEMBC(0x102) CASEMBC(0x104) CASEMBC(0x1cd) CASEMBC(0x1de) CASEMBC(0x1e0) CASEMBC(0x1ea2) EMIT2('A'); EMIT2(0300); EMIT2(0301); EMIT2(0302); EMIT2(0303); EMIT2(0304); EMIT2(0305); EMITMBC(0x100) EMITMBC(0x102) EMITMBC(0x104) EMITMBC(0x1cd) EMITMBC(0x1de) EMITMBC(0x1e0) EMITMBC(0x1ea2) return OK; case 'B': CASEMBC(0x1e02) CASEMBC(0x1e06) EMIT2('B'); EMITMBC(0x1e02) EMITMBC(0x1e06) return OK; case 'C': case 0307: CASEMBC(0x106) CASEMBC(0x108) CASEMBC(0x10a) CASEMBC(0x10c) EMIT2('C'); EMIT2(0307); EMITMBC(0x106) EMITMBC(0x108) EMITMBC(0x10a) EMITMBC(0x10c) return OK; case 'D': CASEMBC(0x10e) CASEMBC(0x110) CASEMBC(0x1e0a) CASEMBC(0x1e0e) CASEMBC(0x1e10) EMIT2('D'); EMITMBC(0x10e) EMITMBC(0x110) EMITMBC(0x1e0a) EMITMBC(0x1e0e) EMITMBC(0x1e10) return OK; case 'E': case 0310: case 0311: case 0312: case 0313: CASEMBC(0x112) CASEMBC(0x114) CASEMBC(0x116) CASEMBC(0x118) CASEMBC(0x11a) CASEMBC(0x1eba) CASEMBC(0x1ebc) EMIT2('E'); EMIT2(0310); EMIT2(0311); EMIT2(0312); EMIT2(0313); EMITMBC(0x112) EMITMBC(0x114) EMITMBC(0x116) EMITMBC(0x118) EMITMBC(0x11a) EMITMBC(0x1eba) EMITMBC(0x1ebc) return OK; case 'F': CASEMBC(0x1e1e) EMIT2('F'); EMITMBC(0x1e1e) return OK; case 'G': CASEMBC(0x11c) CASEMBC(0x11e) CASEMBC(0x120) CASEMBC(0x122) CASEMBC(0x1e4) CASEMBC(0x1e6) CASEMBC(0x1f4) CASEMBC(0x1e20) EMIT2('G'); EMITMBC(0x11c) EMITMBC(0x11e) EMITMBC(0x120) EMITMBC(0x122) EMITMBC(0x1e4) EMITMBC(0x1e6) EMITMBC(0x1f4) EMITMBC(0x1e20) return OK; case 'H': CASEMBC(0x124) CASEMBC(0x126) CASEMBC(0x1e22) CASEMBC(0x1e26) CASEMBC(0x1e28) EMIT2('H'); EMITMBC(0x124) EMITMBC(0x126) EMITMBC(0x1e22) EMITMBC(0x1e26) EMITMBC(0x1e28) return OK; case 'I': case 0314: case 0315: case 0316: case 0317: CASEMBC(0x128) CASEMBC(0x12a) CASEMBC(0x12c) CASEMBC(0x12e) CASEMBC(0x130) CASEMBC(0x1cf) CASEMBC(0x1ec8) EMIT2('I'); EMIT2(0314); EMIT2(0315); EMIT2(0316); EMIT2(0317); EMITMBC(0x128) EMITMBC(0x12a) EMITMBC(0x12c) EMITMBC(0x12e) EMITMBC(0x130) EMITMBC(0x1cf) EMITMBC(0x1ec8) return OK; case 'J': CASEMBC(0x134) EMIT2('J'); EMITMBC(0x134) return OK; case 'K': CASEMBC(0x136) CASEMBC(0x1e8) CASEMBC(0x1e30) CASEMBC(0x1e34) EMIT2('K'); EMITMBC(0x136) EMITMBC(0x1e8) EMITMBC(0x1e30) EMITMBC(0x1e34) return OK; case 'L': CASEMBC(0x139) CASEMBC(0x13b) CASEMBC(0x13d) CASEMBC(0x13f) CASEMBC(0x141) CASEMBC(0x1e3a) EMIT2('L'); EMITMBC(0x139) EMITMBC(0x13b) EMITMBC(0x13d) EMITMBC(0x13f) EMITMBC(0x141) EMITMBC(0x1e3a) return OK; case 'M': CASEMBC(0x1e3e) CASEMBC(0x1e40) EMIT2('M'); EMITMBC(0x1e3e) EMITMBC(0x1e40) return OK; case 'N': case 0321: CASEMBC(0x143) CASEMBC(0x145) CASEMBC(0x147) CASEMBC(0x1e44) CASEMBC(0x1e48) EMIT2('N'); EMIT2(0321); EMITMBC(0x143) EMITMBC(0x145) EMITMBC(0x147) EMITMBC(0x1e44) EMITMBC(0x1e48) return OK; case 'O': case 0322: case 0323: case 0324: case 0325: case 0326: case 0330: CASEMBC(0x14c) CASEMBC(0x14e) CASEMBC(0x150) CASEMBC(0x1a0) CASEMBC(0x1d1) CASEMBC(0x1ea) CASEMBC(0x1ec) CASEMBC(0x1ece) EMIT2('O'); EMIT2(0322); EMIT2(0323); EMIT2(0324); EMIT2(0325); EMIT2(0326); EMIT2(0330); EMITMBC(0x14c) EMITMBC(0x14e) EMITMBC(0x150) EMITMBC(0x1a0) EMITMBC(0x1d1) EMITMBC(0x1ea) EMITMBC(0x1ec) EMITMBC(0x1ece) return OK; case 'P': case 0x1e54: case 0x1e56: EMIT2('P'); EMITMBC(0x1e54) EMITMBC(0x1e56) return OK; case 'R': CASEMBC(0x154) CASEMBC(0x156) CASEMBC(0x158) CASEMBC(0x1e58) CASEMBC(0x1e5e) EMIT2('R'); EMITMBC(0x154) EMITMBC(0x156) EMITMBC(0x158) EMITMBC(0x1e58) EMITMBC(0x1e5e) return OK; case 'S': CASEMBC(0x15a) CASEMBC(0x15c) CASEMBC(0x15e) CASEMBC(0x160) CASEMBC(0x1e60) EMIT2('S'); EMITMBC(0x15a) EMITMBC(0x15c) EMITMBC(0x15e) EMITMBC(0x160) EMITMBC(0x1e60) return OK; case 'T': CASEMBC(0x162) CASEMBC(0x164) CASEMBC(0x166) CASEMBC(0x1e6a) CASEMBC(0x1e6e) EMIT2('T'); EMITMBC(0x162) EMITMBC(0x164) EMITMBC(0x166) EMITMBC(0x1e6a) EMITMBC(0x1e6e) return OK; case 'U': case 0331: case 0332: case 0333: case 0334: CASEMBC(0x168) CASEMBC(0x16a) CASEMBC(0x16c) CASEMBC(0x16e) CASEMBC(0x170) CASEMBC(0x172) CASEMBC(0x1af) CASEMBC(0x1d3) CASEMBC(0x1ee6) EMIT2('U'); EMIT2(0331); EMIT2(0332); EMIT2(0333); EMIT2(0334); EMITMBC(0x168) EMITMBC(0x16a) EMITMBC(0x16c) EMITMBC(0x16e) EMITMBC(0x170) EMITMBC(0x172) EMITMBC(0x1af) EMITMBC(0x1d3) EMITMBC(0x1ee6) return OK; case 'V': CASEMBC(0x1e7c) EMIT2('V'); EMITMBC(0x1e7c) return OK; case 'W': CASEMBC(0x174) CASEMBC(0x1e80) CASEMBC(0x1e82) CASEMBC(0x1e84) CASEMBC(0x1e86) EMIT2('W'); EMITMBC(0x174) EMITMBC(0x1e80) EMITMBC(0x1e82) EMITMBC(0x1e84) EMITMBC(0x1e86) return OK; case 'X': CASEMBC(0x1e8a) CASEMBC(0x1e8c) EMIT2('X'); EMITMBC(0x1e8a) EMITMBC(0x1e8c) return OK; case 'Y': case 0335: CASEMBC(0x176) CASEMBC(0x178) CASEMBC(0x1e8e) CASEMBC(0x1ef2) CASEMBC(0x1ef6) CASEMBC(0x1ef8) EMIT2('Y'); EMIT2(0335); EMITMBC(0x176) EMITMBC(0x178) EMITMBC(0x1e8e) EMITMBC(0x1ef2) EMITMBC(0x1ef6) EMITMBC(0x1ef8) return OK; case 'Z': CASEMBC(0x179) CASEMBC(0x17b) CASEMBC(0x17d) CASEMBC(0x1b5) CASEMBC(0x1e90) CASEMBC(0x1e94) EMIT2('Z'); EMITMBC(0x179) EMITMBC(0x17b) EMITMBC(0x17d) EMITMBC(0x1b5) EMITMBC(0x1e90) EMITMBC(0x1e94) return OK; case 'a': case 0340: case 0341: case 0342: case 0343: case 0344: case 0345: CASEMBC(0x101) CASEMBC(0x103) CASEMBC(0x105) CASEMBC(0x1ce) CASEMBC(0x1df) CASEMBC(0x1e1) CASEMBC(0x1ea3) EMIT2('a'); EMIT2(0340); EMIT2(0341); EMIT2(0342); EMIT2(0343); EMIT2(0344); EMIT2(0345); EMITMBC(0x101) EMITMBC(0x103) EMITMBC(0x105) EMITMBC(0x1ce) EMITMBC(0x1df) EMITMBC(0x1e1) EMITMBC(0x1ea3) return OK; case 'b': CASEMBC(0x1e03) CASEMBC(0x1e07) EMIT2('b'); EMITMBC(0x1e03) EMITMBC(0x1e07) return OK; case 'c': case 0347: CASEMBC(0x107) CASEMBC(0x109) CASEMBC(0x10b) CASEMBC(0x10d) EMIT2('c'); EMIT2(0347); EMITMBC(0x107) EMITMBC(0x109) EMITMBC(0x10b) EMITMBC(0x10d) return OK; case 'd': CASEMBC(0x10f) CASEMBC(0x111) CASEMBC(0x1e0b) CASEMBC(0x1e0f) CASEMBC(0x1e11) EMIT2('d'); EMITMBC(0x10f) EMITMBC(0x111) EMITMBC(0x1e0b) EMITMBC(0x1e0f) EMITMBC(0x1e11) return OK; case 'e': case 0350: case 0351: case 0352: case 0353: CASEMBC(0x113) CASEMBC(0x115) CASEMBC(0x117) CASEMBC(0x119) CASEMBC(0x11b) CASEMBC(0x1ebb) CASEMBC(0x1ebd) EMIT2('e'); EMIT2(0350); EMIT2(0351); EMIT2(0352); EMIT2(0353); EMITMBC(0x113) EMITMBC(0x115) EMITMBC(0x117) EMITMBC(0x119) EMITMBC(0x11b) EMITMBC(0x1ebb) EMITMBC(0x1ebd) return OK; case 'f': CASEMBC(0x1e1f) EMIT2('f'); EMITMBC(0x1e1f) return OK; case 'g': CASEMBC(0x11d) CASEMBC(0x11f) CASEMBC(0x121) CASEMBC(0x123) CASEMBC(0x1e5) CASEMBC(0x1e7) CASEMBC(0x1f5) CASEMBC(0x1e21) EMIT2('g'); EMITMBC(0x11d) EMITMBC(0x11f) EMITMBC(0x121) EMITMBC(0x123) EMITMBC(0x1e5) EMITMBC(0x1e7) EMITMBC(0x1f5) EMITMBC(0x1e21) return OK; case 'h': CASEMBC(0x125) CASEMBC(0x127) CASEMBC(0x1e23) CASEMBC(0x1e27) CASEMBC(0x1e29) CASEMBC(0x1e96) EMIT2('h'); EMITMBC(0x125) EMITMBC(0x127) EMITMBC(0x1e23) EMITMBC(0x1e27) EMITMBC(0x1e29) EMITMBC(0x1e96) return OK; case 'i': case 0354: case 0355: case 0356: case 0357: CASEMBC(0x129) CASEMBC(0x12b) CASEMBC(0x12d) CASEMBC(0x12f) CASEMBC(0x1d0) CASEMBC(0x1ec9) EMIT2('i'); EMIT2(0354); EMIT2(0355); EMIT2(0356); EMIT2(0357); EMITMBC(0x129) EMITMBC(0x12b) EMITMBC(0x12d) EMITMBC(0x12f) EMITMBC(0x1d0) EMITMBC(0x1ec9) return OK; case 'j': CASEMBC(0x135) CASEMBC(0x1f0) EMIT2('j'); EMITMBC(0x135) EMITMBC(0x1f0) return OK; case 'k': CASEMBC(0x137) CASEMBC(0x1e9) CASEMBC(0x1e31) CASEMBC(0x1e35) EMIT2('k'); EMITMBC(0x137) EMITMBC(0x1e9) EMITMBC(0x1e31) EMITMBC(0x1e35) return OK; case 'l': CASEMBC(0x13a) CASEMBC(0x13c) CASEMBC(0x13e) CASEMBC(0x140) CASEMBC(0x142) CASEMBC(0x1e3b) EMIT2('l'); EMITMBC(0x13a) EMITMBC(0x13c) EMITMBC(0x13e) EMITMBC(0x140) EMITMBC(0x142) EMITMBC(0x1e3b) return OK; case 'm': CASEMBC(0x1e3f) CASEMBC(0x1e41) EMIT2('m'); EMITMBC(0x1e3f) EMITMBC(0x1e41) return OK; case 'n': case 0361: CASEMBC(0x144) CASEMBC(0x146) CASEMBC(0x148) CASEMBC(0x149) CASEMBC(0x1e45) CASEMBC(0x1e49) EMIT2('n'); EMIT2(0361); EMITMBC(0x144) EMITMBC(0x146) EMITMBC(0x148) EMITMBC(0x149) EMITMBC(0x1e45) EMITMBC(0x1e49) return OK; case 'o': case 0362: case 0363: case 0364: case 0365: case 0366: case 0370: CASEMBC(0x14d) CASEMBC(0x14f) CASEMBC(0x151) CASEMBC(0x1a1) CASEMBC(0x1d2) CASEMBC(0x1eb) CASEMBC(0x1ed) CASEMBC(0x1ecf) EMIT2('o'); EMIT2(0362); EMIT2(0363); EMIT2(0364); EMIT2(0365); EMIT2(0366); EMIT2(0370); EMITMBC(0x14d) EMITMBC(0x14f) EMITMBC(0x151) EMITMBC(0x1a1) EMITMBC(0x1d2) EMITMBC(0x1eb) EMITMBC(0x1ed) EMITMBC(0x1ecf) return OK; case 'p': CASEMBC(0x1e55) CASEMBC(0x1e57) EMIT2('p'); EMITMBC(0x1e55) EMITMBC(0x1e57) return OK; case 'r': CASEMBC(0x155) CASEMBC(0x157) CASEMBC(0x159) CASEMBC(0x1e59) CASEMBC(0x1e5f) EMIT2('r'); EMITMBC(0x155) EMITMBC(0x157) EMITMBC(0x159) EMITMBC(0x1e59) EMITMBC(0x1e5f) return OK; case 's': CASEMBC(0x15b) CASEMBC(0x15d) CASEMBC(0x15f) CASEMBC(0x161) CASEMBC(0x1e61) EMIT2('s'); EMITMBC(0x15b) EMITMBC(0x15d) EMITMBC(0x15f) EMITMBC(0x161) EMITMBC(0x1e61) return OK; case 't': CASEMBC(0x163) CASEMBC(0x165) CASEMBC(0x167) CASEMBC(0x1e6b) CASEMBC(0x1e6f) CASEMBC(0x1e97) EMIT2('t'); EMITMBC(0x163) EMITMBC(0x165) EMITMBC(0x167) EMITMBC(0x1e6b) EMITMBC(0x1e6f) EMITMBC(0x1e97) return OK; case 'u': case 0371: case 0372: case 0373: case 0374: CASEMBC(0x169) CASEMBC(0x16b) CASEMBC(0x16d) CASEMBC(0x16f) CASEMBC(0x171) CASEMBC(0x173) CASEMBC(0x1b0) CASEMBC(0x1d4) CASEMBC(0x1ee7) EMIT2('u'); EMIT2(0371); EMIT2(0372); EMIT2(0373); EMIT2(0374); EMITMBC(0x169) EMITMBC(0x16b) EMITMBC(0x16d) EMITMBC(0x16f) EMITMBC(0x171) EMITMBC(0x173) EMITMBC(0x1b0) EMITMBC(0x1d4) EMITMBC(0x1ee7) return OK; case 'v': CASEMBC(0x1e7d) EMIT2('v'); EMITMBC(0x1e7d) return OK; case 'w': CASEMBC(0x175) CASEMBC(0x1e81) CASEMBC(0x1e83) CASEMBC(0x1e85) CASEMBC(0x1e87) CASEMBC(0x1e98) EMIT2('w'); EMITMBC(0x175) EMITMBC(0x1e81) EMITMBC(0x1e83) EMITMBC(0x1e85) EMITMBC(0x1e87) EMITMBC(0x1e98) return OK; case 'x': CASEMBC(0x1e8b) CASEMBC(0x1e8d) EMIT2('x'); EMITMBC(0x1e8b) EMITMBC(0x1e8d) return OK; case 'y': case 0375: case 0377: CASEMBC(0x177) CASEMBC(0x1e8f) CASEMBC(0x1e99) CASEMBC(0x1ef3) CASEMBC(0x1ef7) CASEMBC(0x1ef9) EMIT2('y'); EMIT2(0375); EMIT2(0377); EMITMBC(0x177) EMITMBC(0x1e8f) EMITMBC(0x1e99) EMITMBC(0x1ef3) EMITMBC(0x1ef7) EMITMBC(0x1ef9) return OK; case 'z': CASEMBC(0x17a) CASEMBC(0x17c) CASEMBC(0x17e) CASEMBC(0x1b6) CASEMBC(0x1e91) CASEMBC(0x1e95) EMIT2('z'); EMITMBC(0x17a) EMITMBC(0x17c) EMITMBC(0x17e) EMITMBC(0x1b6) EMITMBC(0x1e91) EMITMBC(0x1e95) return OK; /* default: character itself */ } } EMIT2(c); return OK; #undef EMIT2 #undef EMITMBC } /* * Code to parse regular expression. * * We try to reuse parsing functions in regexp.c to * minimize surprise and keep the syntax consistent. */ /* * Parse the lowest level. * * An atom can be one of a long list of items. Many atoms match one character * in the text. It is often an ordinary character or a character class. * Braces can be used to make a pattern into an atom. The "\z(\)" construct * is only for syntax highlighting. * * atom ::= ordinary-atom * or \( pattern \) * or \%( pattern \) * or \z( pattern \) */ static int nfa_regatom(void) { int c; int charclass; int equiclass; int collclass; int got_coll_char; char_u *p; char_u *endp; #ifdef FEAT_MBYTE char_u *old_regparse = regparse; #endif int extra = 0; int emit_range; int negated; int result; int startc = -1; int endc = -1; int oldstartc = -1; int save_prev_at_start = prev_at_start; c = getchr(); switch (c) { case NUL: EMSG_RET_FAIL(_(e_nul_found)); case Magic('^'): EMIT(NFA_BOL); break; case Magic('$'): EMIT(NFA_EOL); #if defined(FEAT_SYN_HL) || defined(PROTO) had_eol = TRUE; #endif break; case Magic('<'): EMIT(NFA_BOW); break; case Magic('>'): EMIT(NFA_EOW); break; case Magic('_'): c = no_Magic(getchr()); if (c == NUL) EMSG_RET_FAIL(_(e_nul_found)); if (c == '^') /* "\_^" is start-of-line */ { EMIT(NFA_BOL); break; } if (c == '$') /* "\_$" is end-of-line */ { EMIT(NFA_EOL); #if defined(FEAT_SYN_HL) || defined(PROTO) had_eol = TRUE; #endif break; } extra = NFA_ADD_NL; /* "\_[" is collection plus newline */ if (c == '[') goto collection; /* "\_x" is character class plus newline */ /*FALLTHROUGH*/ /* * Character classes. */ case Magic('.'): case Magic('i'): case Magic('I'): case Magic('k'): case Magic('K'): case Magic('f'): case Magic('F'): case Magic('p'): case Magic('P'): case Magic('s'): case Magic('S'): case Magic('d'): case Magic('D'): case Magic('x'): case Magic('X'): case Magic('o'): case Magic('O'): case Magic('w'): case Magic('W'): case Magic('h'): case Magic('H'): case Magic('a'): case Magic('A'): case Magic('l'): case Magic('L'): case Magic('u'): case Magic('U'): p = vim_strchr(classchars, no_Magic(c)); if (p == NULL) { if (extra == NFA_ADD_NL) { EMSGN(_(e_ill_char_class), c); rc_did_emsg = TRUE; return FAIL; } EMSGN("INTERNAL: Unknown character class char: %ld", c); return FAIL; } #ifdef FEAT_MBYTE /* When '.' is followed by a composing char ignore the dot, so that * the composing char is matched here. */ if (enc_utf8 && c == Magic('.') && utf_iscomposing(peekchr())) { old_regparse = regparse; c = getchr(); goto nfa_do_multibyte; } #endif EMIT(nfa_classcodes[p - classchars]); if (extra == NFA_ADD_NL) { EMIT(NFA_NEWL); EMIT(NFA_OR); regflags |= RF_HASNL; } break; case Magic('n'): if (reg_string) /* In a string "\n" matches a newline character. */ EMIT(NL); else { /* In buffer text "\n" matches the end of a line. */ EMIT(NFA_NEWL); regflags |= RF_HASNL; } break; case Magic('('): if (nfa_reg(REG_PAREN) == FAIL) return FAIL; /* cascaded error */ break; case Magic('|'): case Magic('&'): case Magic(')'): EMSGN(_(e_misplaced), no_Magic(c)); return FAIL; case Magic('='): case Magic('?'): case Magic('+'): case Magic('@'): case Magic('*'): case Magic('{'): /* these should follow an atom, not form an atom */ EMSGN(_(e_misplaced), no_Magic(c)); return FAIL; case Magic('~'): { char_u *lp; /* Previous substitute pattern. * Generated as "\%(pattern\)". */ if (reg_prev_sub == NULL) { EMSG(_(e_nopresub)); return FAIL; } for (lp = reg_prev_sub; *lp != NUL; mb_cptr_adv(lp)) { EMIT(PTR2CHAR(lp)); if (lp != reg_prev_sub) EMIT(NFA_CONCAT); } EMIT(NFA_NOPEN); break; } case Magic('1'): case Magic('2'): case Magic('3'): case Magic('4'): case Magic('5'): case Magic('6'): case Magic('7'): case Magic('8'): case Magic('9'): EMIT(NFA_BACKREF1 + (no_Magic(c) - '1')); nfa_has_backref = TRUE; break; case Magic('z'): c = no_Magic(getchr()); switch (c) { case 's': EMIT(NFA_ZSTART); if (re_mult_next("\\zs") == FAIL) return FAIL; break; case 'e': EMIT(NFA_ZEND); nfa_has_zend = TRUE; if (re_mult_next("\\ze") == FAIL) return FAIL; break; #ifdef FEAT_SYN_HL case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': /* \z1...\z9 */ if (reg_do_extmatch != REX_USE) EMSG_RET_FAIL(_(e_z1_not_allowed)); EMIT(NFA_ZREF1 + (no_Magic(c) - '1')); /* No need to set nfa_has_backref, the sub-matches don't * change when \z1 .. \z9 matches or not. */ re_has_z = REX_USE; break; case '(': /* \z( */ if (reg_do_extmatch != REX_SET) EMSG_RET_FAIL(_(e_z_not_allowed)); if (nfa_reg(REG_ZPAREN) == FAIL) return FAIL; /* cascaded error */ re_has_z = REX_SET; break; #endif default: EMSGN(_("E867: (NFA) Unknown operator '\\z%c'"), no_Magic(c)); return FAIL; } break; case Magic('%'): c = no_Magic(getchr()); switch (c) { /* () without a back reference */ case '(': if (nfa_reg(REG_NPAREN) == FAIL) return FAIL; EMIT(NFA_NOPEN); break; case 'd': /* %d123 decimal */ case 'o': /* %o123 octal */ case 'x': /* %xab hex 2 */ case 'u': /* %uabcd hex 4 */ case 'U': /* %U1234abcd hex 8 */ { int nr; switch (c) { case 'd': nr = getdecchrs(); break; case 'o': nr = getoctchrs(); break; case 'x': nr = gethexchrs(2); break; case 'u': nr = gethexchrs(4); break; case 'U': nr = gethexchrs(8); break; default: nr = -1; break; } if (nr < 0) EMSG2_RET_FAIL( _("E678: Invalid character after %s%%[dxouU]"), reg_magic == MAGIC_ALL); /* A NUL is stored in the text as NL */ /* TODO: what if a composing character follows? */ EMIT(nr == 0 ? 0x0a : nr); } break; /* Catch \%^ and \%$ regardless of where they appear in the * pattern -- regardless of whether or not it makes sense. */ case '^': EMIT(NFA_BOF); break; case '$': EMIT(NFA_EOF); break; case '#': EMIT(NFA_CURSOR); break; case 'V': EMIT(NFA_VISUAL); break; case 'C': EMIT(NFA_ANY_COMPOSING); break; case '[': { int n; /* \%[abc] */ for (n = 0; (c = peekchr()) != ']'; ++n) { if (c == NUL) EMSG2_RET_FAIL(_(e_missing_sb), reg_magic == MAGIC_ALL); /* recursive call! */ if (nfa_regatom() == FAIL) return FAIL; } getchr(); /* get the ] */ if (n == 0) EMSG2_RET_FAIL(_(e_empty_sb), reg_magic == MAGIC_ALL); EMIT(NFA_OPT_CHARS); EMIT(n); /* Emit as "\%(\%[abc]\)" to be able to handle * "\%[abc]*" which would cause the empty string to be * matched an unlimited number of times. NFA_NOPEN is * added only once at a position, while NFA_SPLIT is * added multiple times. This is more efficient than * not allowing NFA_SPLIT multiple times, it is used * a lot. */ EMIT(NFA_NOPEN); break; } default: { int n = 0; int cmp = c; if (c == '<' || c == '>') c = getchr(); while (VIM_ISDIGIT(c)) { n = n * 10 + (c - '0'); c = getchr(); } if (c == 'l' || c == 'c' || c == 'v') { if (c == 'l') { /* \%{n}l \%{n}<l \%{n}>l */ EMIT(cmp == '<' ? NFA_LNUM_LT : cmp == '>' ? NFA_LNUM_GT : NFA_LNUM); if (save_prev_at_start) at_start = TRUE; } else if (c == 'c') /* \%{n}c \%{n}<c \%{n}>c */ EMIT(cmp == '<' ? NFA_COL_LT : cmp == '>' ? NFA_COL_GT : NFA_COL); else /* \%{n}v \%{n}<v \%{n}>v */ EMIT(cmp == '<' ? NFA_VCOL_LT : cmp == '>' ? NFA_VCOL_GT : NFA_VCOL); EMIT(n); break; } else if (c == '\'' && n == 0) { /* \%'m \%<'m \%>'m */ EMIT(cmp == '<' ? NFA_MARK_LT : cmp == '>' ? NFA_MARK_GT : NFA_MARK); EMIT(getchr()); break; } } EMSGN(_("E867: (NFA) Unknown operator '\\%%%c'"), no_Magic(c)); return FAIL; } break; case Magic('['): collection: /* * [abc] uses NFA_START_COLL - NFA_END_COLL * [^abc] uses NFA_START_NEG_COLL - NFA_END_NEG_COLL * Each character is produced as a regular state, using * NFA_CONCAT to bind them together. * Besides normal characters there can be: * - character classes NFA_CLASS_* * - ranges, two characters followed by NFA_RANGE. */ p = regparse; endp = skip_anyof(p); if (*endp == ']') { /* * Try to reverse engineer character classes. For example, * recognize that [0-9] stands for \d and [A-Za-z_] for \h, * and perform the necessary substitutions in the NFA. */ result = nfa_recognize_char_class(regparse, endp, extra == NFA_ADD_NL); if (result != FAIL) { if (result >= NFA_FIRST_NL && result <= NFA_LAST_NL) { EMIT(result - NFA_ADD_NL); EMIT(NFA_NEWL); EMIT(NFA_OR); } else EMIT(result); regparse = endp; mb_ptr_adv(regparse); return OK; } /* * Failed to recognize a character class. Use the simple * version that turns [abc] into 'a' OR 'b' OR 'c' */ startc = endc = oldstartc = -1; negated = FALSE; if (*regparse == '^') /* negated range */ { negated = TRUE; mb_ptr_adv(regparse); EMIT(NFA_START_NEG_COLL); } else EMIT(NFA_START_COLL); if (*regparse == '-') { startc = '-'; EMIT(startc); EMIT(NFA_CONCAT); mb_ptr_adv(regparse); } /* Emit the OR branches for each character in the [] */ emit_range = FALSE; while (regparse < endp) { oldstartc = startc; startc = -1; got_coll_char = FALSE; if (*regparse == '[') { /* Check for [: :], [= =], [. .] */ equiclass = collclass = 0; charclass = get_char_class(®parse); if (charclass == CLASS_NONE) { equiclass = get_equi_class(®parse); if (equiclass == 0) collclass = get_coll_element(®parse); } /* Character class like [:alpha:] */ if (charclass != CLASS_NONE) { switch (charclass) { case CLASS_ALNUM: EMIT(NFA_CLASS_ALNUM); break; case CLASS_ALPHA: EMIT(NFA_CLASS_ALPHA); break; case CLASS_BLANK: EMIT(NFA_CLASS_BLANK); break; case CLASS_CNTRL: EMIT(NFA_CLASS_CNTRL); break; case CLASS_DIGIT: EMIT(NFA_CLASS_DIGIT); break; case CLASS_GRAPH: EMIT(NFA_CLASS_GRAPH); break; case CLASS_LOWER: EMIT(NFA_CLASS_LOWER); break; case CLASS_PRINT: EMIT(NFA_CLASS_PRINT); break; case CLASS_PUNCT: EMIT(NFA_CLASS_PUNCT); break; case CLASS_SPACE: EMIT(NFA_CLASS_SPACE); break; case CLASS_UPPER: EMIT(NFA_CLASS_UPPER); break; case CLASS_XDIGIT: EMIT(NFA_CLASS_XDIGIT); break; case CLASS_TAB: EMIT(NFA_CLASS_TAB); break; case CLASS_RETURN: EMIT(NFA_CLASS_RETURN); break; case CLASS_BACKSPACE: EMIT(NFA_CLASS_BACKSPACE); break; case CLASS_ESCAPE: EMIT(NFA_CLASS_ESCAPE); break; } EMIT(NFA_CONCAT); continue; } /* Try equivalence class [=a=] and the like */ if (equiclass != 0) { result = nfa_emit_equi_class(equiclass); if (result == FAIL) { /* should never happen */ EMSG_RET_FAIL(_("E868: Error building NFA with equivalence class!")); } continue; } /* Try collating class like [. .] */ if (collclass != 0) { startc = collclass; /* allow [.a.]-x as a range */ /* Will emit the proper atom at the end of the * while loop. */ } } /* Try a range like 'a-x' or '\t-z'. Also allows '-' as a * start character. */ if (*regparse == '-' && oldstartc != -1) { emit_range = TRUE; startc = oldstartc; mb_ptr_adv(regparse); continue; /* reading the end of the range */ } /* Now handle simple and escaped characters. * Only "\]", "\^", "\]" and "\\" are special in Vi. Vim * accepts "\t", "\e", etc., but only when the 'l' flag in * 'cpoptions' is not included. * Posix doesn't recognize backslash at all. */ if (*regparse == '\\' && !reg_cpo_bsl && regparse + 1 <= endp && (vim_strchr(REGEXP_INRANGE, regparse[1]) != NULL || (!reg_cpo_lit && vim_strchr(REGEXP_ABBR, regparse[1]) != NULL) ) ) { mb_ptr_adv(regparse); if (*regparse == 'n') startc = reg_string ? NL : NFA_NEWL; else if (*regparse == 'd' || *regparse == 'o' || *regparse == 'x' || *regparse == 'u' || *regparse == 'U' ) { /* TODO(RE) This needs more testing */ startc = coll_get_char(); got_coll_char = TRUE; mb_ptr_back(old_regparse, regparse); } else { /* \r,\t,\e,\b */ startc = backslash_trans(*regparse); } } /* Normal printable char */ if (startc == -1) startc = PTR2CHAR(regparse); /* Previous char was '-', so this char is end of range. */ if (emit_range) { endc = startc; startc = oldstartc; if (startc > endc) EMSG_RET_FAIL(_(e_invrange)); if (endc > startc + 2) { /* Emit a range instead of the sequence of * individual characters. */ if (startc == 0) /* \x00 is translated to \x0a, start at \x01. */ EMIT(1); else --post_ptr; /* remove NFA_CONCAT */ EMIT(endc); EMIT(NFA_RANGE); EMIT(NFA_CONCAT); } else #ifdef FEAT_MBYTE if (has_mbyte && ((*mb_char2len)(startc) > 1 || (*mb_char2len)(endc) > 1)) { /* Emit the characters in the range. * "startc" was already emitted, so skip it. * */ for (c = startc + 1; c <= endc; c++) { EMIT(c); EMIT(NFA_CONCAT); } } else #endif { #ifdef EBCDIC int alpha_only = FALSE; /* for alphabetical range skip the gaps * 'i'-'j', 'r'-'s', 'I'-'J' and 'R'-'S'. */ if (isalpha(startc) && isalpha(endc)) alpha_only = TRUE; #endif /* Emit the range. "startc" was already emitted, so * skip it. */ for (c = startc + 1; c <= endc; c++) #ifdef EBCDIC if (!alpha_only || isalpha(startc)) #endif { EMIT(c); EMIT(NFA_CONCAT); } } emit_range = FALSE; startc = -1; } else { /* This char (startc) is not part of a range. Just * emit it. * Normally, simply emit startc. But if we get char * code=0 from a collating char, then replace it with * 0x0a. * This is needed to completely mimic the behaviour of * the backtracking engine. */ if (startc == NFA_NEWL) { /* Line break can't be matched as part of the * collection, add an OR below. But not for negated * range. */ if (!negated) extra = NFA_ADD_NL; } else { if (got_coll_char == TRUE && startc == 0) EMIT(0x0a); else EMIT(startc); EMIT(NFA_CONCAT); } } mb_ptr_adv(regparse); } /* while (p < endp) */ mb_ptr_back(old_regparse, regparse); if (*regparse == '-') /* if last, '-' is just a char */ { EMIT('-'); EMIT(NFA_CONCAT); } /* skip the trailing ] */ regparse = endp; mb_ptr_adv(regparse); /* Mark end of the collection. */ if (negated == TRUE) EMIT(NFA_END_NEG_COLL); else EMIT(NFA_END_COLL); /* \_[] also matches \n but it's not negated */ if (extra == NFA_ADD_NL) { EMIT(reg_string ? NL : NFA_NEWL); EMIT(NFA_OR); } return OK; } /* if exists closing ] */ if (reg_strict) EMSG_RET_FAIL(_(e_missingbracket)); /* FALLTHROUGH */ default: { #ifdef FEAT_MBYTE int plen; nfa_do_multibyte: /* plen is length of current char with composing chars */ if (enc_utf8 && ((*mb_char2len)(c) != (plen = (*mb_ptr2len)(old_regparse)) || utf_iscomposing(c))) { int i = 0; /* A base character plus composing characters, or just one * or more composing characters. * This requires creating a separate atom as if enclosing * the characters in (), where NFA_COMPOSING is the ( and * NFA_END_COMPOSING is the ). Note that right now we are * building the postfix form, not the NFA itself; * a composing char could be: a, b, c, NFA_COMPOSING * where 'b' and 'c' are chars with codes > 256. */ for (;;) { EMIT(c); if (i > 0) EMIT(NFA_CONCAT); if ((i += utf_char2len(c)) >= plen) break; c = utf_ptr2char(old_regparse + i); } EMIT(NFA_COMPOSING); regparse = old_regparse + plen; } else #endif { c = no_Magic(c); EMIT(c); } return OK; } } return OK; } /* * Parse something followed by possible [*+=]. * * A piece is an atom, possibly followed by a multi, an indication of how many * times the atom can be matched. Example: "a*" matches any sequence of "a" * characters: "", "a", "aa", etc. * * piece ::= atom * or atom multi */ static int nfa_regpiece(void) { int i; int op; int ret; long minval, maxval; int greedy = TRUE; /* Braces are prefixed with '-' ? */ parse_state_T old_state; parse_state_T new_state; int c2; int old_post_pos; int my_post_start; int quest; /* Save the current parse state, so that we can use it if <atom>{m,n} is * next. */ save_parse_state(&old_state); /* store current pos in the postfix form, for \{m,n} involving 0s */ my_post_start = (int)(post_ptr - post_start); ret = nfa_regatom(); if (ret == FAIL) return FAIL; /* cascaded error */ op = peekchr(); if (re_multi_type(op) == NOT_MULTI) return OK; skipchr(); switch (op) { case Magic('*'): EMIT(NFA_STAR); break; case Magic('+'): /* * Trick: Normally, (a*)\+ would match the whole input "aaa". The * first and only submatch would be "aaa". But the backtracking * engine interprets the plus as "try matching one more time", and * a* matches a second time at the end of the input, the empty * string. * The submatch will be the empty string. * * In order to be consistent with the old engine, we replace * <atom>+ with <atom><atom>* */ restore_parse_state(&old_state); curchr = -1; if (nfa_regatom() == FAIL) return FAIL; EMIT(NFA_STAR); EMIT(NFA_CONCAT); skipchr(); /* skip the \+ */ break; case Magic('@'): c2 = getdecchrs(); op = no_Magic(getchr()); i = 0; switch(op) { case '=': /* \@= */ i = NFA_PREV_ATOM_NO_WIDTH; break; case '!': /* \@! */ i = NFA_PREV_ATOM_NO_WIDTH_NEG; break; case '<': op = no_Magic(getchr()); if (op == '=') /* \@<= */ i = NFA_PREV_ATOM_JUST_BEFORE; else if (op == '!') /* \@<! */ i = NFA_PREV_ATOM_JUST_BEFORE_NEG; break; case '>': /* \@> */ i = NFA_PREV_ATOM_LIKE_PATTERN; break; } if (i == 0) { EMSGN(_("E869: (NFA) Unknown operator '\\@%c'"), op); return FAIL; } EMIT(i); if (i == NFA_PREV_ATOM_JUST_BEFORE || i == NFA_PREV_ATOM_JUST_BEFORE_NEG) EMIT(c2); break; case Magic('?'): case Magic('='): EMIT(NFA_QUEST); break; case Magic('{'): /* a{2,5} will expand to 'aaa?a?a?' * a{-1,3} will expand to 'aa??a??', where ?? is the nongreedy * version of '?' * \v(ab){2,3} will expand to '(ab)(ab)(ab)?', where all the * parenthesis have the same id */ greedy = TRUE; c2 = peekchr(); if (c2 == '-' || c2 == Magic('-')) { skipchr(); greedy = FALSE; } if (!read_limits(&minval, &maxval)) EMSG_RET_FAIL(_("E870: (NFA regexp) Error reading repetition limits")); /* <atom>{0,inf}, <atom>{0,} and <atom>{} are equivalent to * <atom>* */ if (minval == 0 && maxval == MAX_LIMIT) { if (greedy) /* { { (match the braces) */ /* \{}, \{0,} */ EMIT(NFA_STAR); else /* { { (match the braces) */ /* \{-}, \{-0,} */ EMIT(NFA_STAR_NONGREEDY); break; } /* Special case: x{0} or x{-0} */ if (maxval == 0) { /* Ignore result of previous call to nfa_regatom() */ post_ptr = post_start + my_post_start; /* NFA_EMPTY is 0-length and works everywhere */ EMIT(NFA_EMPTY); return OK; } /* The engine is very inefficient (uses too many states) when the * maximum is much larger than the minimum and when the maximum is * large. Bail out if we can use the other engine. */ if ((nfa_re_flags & RE_AUTO) && (maxval > minval + 200 || maxval > 500)) return FAIL; /* Ignore previous call to nfa_regatom() */ post_ptr = post_start + my_post_start; /* Save parse state after the repeated atom and the \{} */ save_parse_state(&new_state); quest = (greedy == TRUE? NFA_QUEST : NFA_QUEST_NONGREEDY); for (i = 0; i < maxval; i++) { /* Goto beginning of the repeated atom */ restore_parse_state(&old_state); old_post_pos = (int)(post_ptr - post_start); if (nfa_regatom() == FAIL) return FAIL; /* after "minval" times, atoms are optional */ if (i + 1 > minval) { if (maxval == MAX_LIMIT) { if (greedy) EMIT(NFA_STAR); else EMIT(NFA_STAR_NONGREEDY); } else EMIT(quest); } if (old_post_pos != my_post_start) EMIT(NFA_CONCAT); if (i + 1 > minval && maxval == MAX_LIMIT) break; } /* Go to just after the repeated atom and the \{} */ restore_parse_state(&new_state); curchr = -1; break; default: break; } /* end switch */ if (re_multi_type(peekchr()) != NOT_MULTI) /* Can't have a multi follow a multi. */ EMSG_RET_FAIL(_("E871: (NFA regexp) Can't have a multi follow a multi !")); return OK; } /* * Parse one or more pieces, concatenated. It matches a match for the * first piece, followed by a match for the second piece, etc. Example: * "f[0-9]b", first matches "f", then a digit and then "b". * * concat ::= piece * or piece piece * or piece piece piece * etc. */ static int nfa_regconcat(void) { int cont = TRUE; int first = TRUE; while (cont) { switch (peekchr()) { case NUL: case Magic('|'): case Magic('&'): case Magic(')'): cont = FALSE; break; case Magic('Z'): #ifdef FEAT_MBYTE regflags |= RF_ICOMBINE; #endif skipchr_keepstart(); break; case Magic('c'): regflags |= RF_ICASE; skipchr_keepstart(); break; case Magic('C'): regflags |= RF_NOICASE; skipchr_keepstart(); break; case Magic('v'): reg_magic = MAGIC_ALL; skipchr_keepstart(); curchr = -1; break; case Magic('m'): reg_magic = MAGIC_ON; skipchr_keepstart(); curchr = -1; break; case Magic('M'): reg_magic = MAGIC_OFF; skipchr_keepstart(); curchr = -1; break; case Magic('V'): reg_magic = MAGIC_NONE; skipchr_keepstart(); curchr = -1; break; default: if (nfa_regpiece() == FAIL) return FAIL; if (first == FALSE) EMIT(NFA_CONCAT); else first = FALSE; break; } } return OK; } /* * Parse a branch, one or more concats, separated by "\&". It matches the * last concat, but only if all the preceding concats also match at the same * position. Examples: * "foobeep\&..." matches "foo" in "foobeep". * ".*Peter\&.*Bob" matches in a line containing both "Peter" and "Bob" * * branch ::= concat * or concat \& concat * or concat \& concat \& concat * etc. */ static int nfa_regbranch(void) { int ch; int old_post_pos; old_post_pos = (int)(post_ptr - post_start); /* First branch, possibly the only one */ if (nfa_regconcat() == FAIL) return FAIL; ch = peekchr(); /* Try next concats */ while (ch == Magic('&')) { skipchr(); EMIT(NFA_NOPEN); EMIT(NFA_PREV_ATOM_NO_WIDTH); old_post_pos = (int)(post_ptr - post_start); if (nfa_regconcat() == FAIL) return FAIL; /* if concat is empty do emit a node */ if (old_post_pos == (int)(post_ptr - post_start)) EMIT(NFA_EMPTY); EMIT(NFA_CONCAT); ch = peekchr(); } /* if a branch is empty, emit one node for it */ if (old_post_pos == (int)(post_ptr - post_start)) EMIT(NFA_EMPTY); return OK; } /* * Parse a pattern, one or more branches, separated by "\|". It matches * anything that matches one of the branches. Example: "foo\|beep" matches * "foo" and matches "beep". If more than one branch matches, the first one * is used. * * pattern ::= branch * or branch \| branch * or branch \| branch \| branch * etc. */ static int nfa_reg( int paren) /* REG_NOPAREN, REG_PAREN, REG_NPAREN or REG_ZPAREN */ { int parno = 0; if (paren == REG_PAREN) { if (regnpar >= NSUBEXP) /* Too many `(' */ EMSG_RET_FAIL(_("E872: (NFA regexp) Too many '('")); parno = regnpar++; } #ifdef FEAT_SYN_HL else if (paren == REG_ZPAREN) { /* Make a ZOPEN node. */ if (regnzpar >= NSUBEXP) EMSG_RET_FAIL(_("E879: (NFA regexp) Too many \\z(")); parno = regnzpar++; } #endif if (nfa_regbranch() == FAIL) return FAIL; /* cascaded error */ while (peekchr() == Magic('|')) { skipchr(); if (nfa_regbranch() == FAIL) return FAIL; /* cascaded error */ EMIT(NFA_OR); } /* Check for proper termination. */ if (paren != REG_NOPAREN && getchr() != Magic(')')) { if (paren == REG_NPAREN) EMSG2_RET_FAIL(_(e_unmatchedpp), reg_magic == MAGIC_ALL); else EMSG2_RET_FAIL(_(e_unmatchedp), reg_magic == MAGIC_ALL); } else if (paren == REG_NOPAREN && peekchr() != NUL) { if (peekchr() == Magic(')')) EMSG2_RET_FAIL(_(e_unmatchedpar), reg_magic == MAGIC_ALL); else EMSG_RET_FAIL(_("E873: (NFA regexp) proper termination error")); } /* * Here we set the flag allowing back references to this set of * parentheses. */ if (paren == REG_PAREN) { had_endbrace[parno] = TRUE; /* have seen the close paren */ EMIT(NFA_MOPEN + parno); } #ifdef FEAT_SYN_HL else if (paren == REG_ZPAREN) EMIT(NFA_ZOPEN + parno); #endif return OK; } #ifdef DEBUG static char_u code[50]; static void nfa_set_code(int c) { int addnl = FALSE; if (c >= NFA_FIRST_NL && c <= NFA_LAST_NL) { addnl = TRUE; c -= NFA_ADD_NL; } STRCPY(code, ""); switch (c) { case NFA_MATCH: STRCPY(code, "NFA_MATCH "); break; case NFA_SPLIT: STRCPY(code, "NFA_SPLIT "); break; case NFA_CONCAT: STRCPY(code, "NFA_CONCAT "); break; case NFA_NEWL: STRCPY(code, "NFA_NEWL "); break; case NFA_ZSTART: STRCPY(code, "NFA_ZSTART"); break; case NFA_ZEND: STRCPY(code, "NFA_ZEND"); break; case NFA_BACKREF1: STRCPY(code, "NFA_BACKREF1"); break; case NFA_BACKREF2: STRCPY(code, "NFA_BACKREF2"); break; case NFA_BACKREF3: STRCPY(code, "NFA_BACKREF3"); break; case NFA_BACKREF4: STRCPY(code, "NFA_BACKREF4"); break; case NFA_BACKREF5: STRCPY(code, "NFA_BACKREF5"); break; case NFA_BACKREF6: STRCPY(code, "NFA_BACKREF6"); break; case NFA_BACKREF7: STRCPY(code, "NFA_BACKREF7"); break; case NFA_BACKREF8: STRCPY(code, "NFA_BACKREF8"); break; case NFA_BACKREF9: STRCPY(code, "NFA_BACKREF9"); break; #ifdef FEAT_SYN_HL case NFA_ZREF1: STRCPY(code, "NFA_ZREF1"); break; case NFA_ZREF2: STRCPY(code, "NFA_ZREF2"); break; case NFA_ZREF3: STRCPY(code, "NFA_ZREF3"); break; case NFA_ZREF4: STRCPY(code, "NFA_ZREF4"); break; case NFA_ZREF5: STRCPY(code, "NFA_ZREF5"); break; case NFA_ZREF6: STRCPY(code, "NFA_ZREF6"); break; case NFA_ZREF7: STRCPY(code, "NFA_ZREF7"); break; case NFA_ZREF8: STRCPY(code, "NFA_ZREF8"); break; case NFA_ZREF9: STRCPY(code, "NFA_ZREF9"); break; #endif case NFA_SKIP: STRCPY(code, "NFA_SKIP"); break; case NFA_PREV_ATOM_NO_WIDTH: STRCPY(code, "NFA_PREV_ATOM_NO_WIDTH"); break; case NFA_PREV_ATOM_NO_WIDTH_NEG: STRCPY(code, "NFA_PREV_ATOM_NO_WIDTH_NEG"); break; case NFA_PREV_ATOM_JUST_BEFORE: STRCPY(code, "NFA_PREV_ATOM_JUST_BEFORE"); break; case NFA_PREV_ATOM_JUST_BEFORE_NEG: STRCPY(code, "NFA_PREV_ATOM_JUST_BEFORE_NEG"); break; case NFA_PREV_ATOM_LIKE_PATTERN: STRCPY(code, "NFA_PREV_ATOM_LIKE_PATTERN"); break; case NFA_NOPEN: STRCPY(code, "NFA_NOPEN"); break; case NFA_NCLOSE: STRCPY(code, "NFA_NCLOSE"); break; case NFA_START_INVISIBLE: STRCPY(code, "NFA_START_INVISIBLE"); break; case NFA_START_INVISIBLE_FIRST: STRCPY(code, "NFA_START_INVISIBLE_FIRST"); break; case NFA_START_INVISIBLE_NEG: STRCPY(code, "NFA_START_INVISIBLE_NEG"); break; case NFA_START_INVISIBLE_NEG_FIRST: STRCPY(code, "NFA_START_INVISIBLE_NEG_FIRST"); break; case NFA_START_INVISIBLE_BEFORE: STRCPY(code, "NFA_START_INVISIBLE_BEFORE"); break; case NFA_START_INVISIBLE_BEFORE_FIRST: STRCPY(code, "NFA_START_INVISIBLE_BEFORE_FIRST"); break; case NFA_START_INVISIBLE_BEFORE_NEG: STRCPY(code, "NFA_START_INVISIBLE_BEFORE_NEG"); break; case NFA_START_INVISIBLE_BEFORE_NEG_FIRST: STRCPY(code, "NFA_START_INVISIBLE_BEFORE_NEG_FIRST"); break; case NFA_START_PATTERN: STRCPY(code, "NFA_START_PATTERN"); break; case NFA_END_INVISIBLE: STRCPY(code, "NFA_END_INVISIBLE"); break; case NFA_END_INVISIBLE_NEG: STRCPY(code, "NFA_END_INVISIBLE_NEG"); break; case NFA_END_PATTERN: STRCPY(code, "NFA_END_PATTERN"); break; case NFA_COMPOSING: STRCPY(code, "NFA_COMPOSING"); break; case NFA_END_COMPOSING: STRCPY(code, "NFA_END_COMPOSING"); break; case NFA_OPT_CHARS: STRCPY(code, "NFA_OPT_CHARS"); break; case NFA_MOPEN: case NFA_MOPEN1: case NFA_MOPEN2: case NFA_MOPEN3: case NFA_MOPEN4: case NFA_MOPEN5: case NFA_MOPEN6: case NFA_MOPEN7: case NFA_MOPEN8: case NFA_MOPEN9: STRCPY(code, "NFA_MOPEN(x)"); code[10] = c - NFA_MOPEN + '0'; break; case NFA_MCLOSE: case NFA_MCLOSE1: case NFA_MCLOSE2: case NFA_MCLOSE3: case NFA_MCLOSE4: case NFA_MCLOSE5: case NFA_MCLOSE6: case NFA_MCLOSE7: case NFA_MCLOSE8: case NFA_MCLOSE9: STRCPY(code, "NFA_MCLOSE(x)"); code[11] = c - NFA_MCLOSE + '0'; break; #ifdef FEAT_SYN_HL case NFA_ZOPEN: case NFA_ZOPEN1: case NFA_ZOPEN2: case NFA_ZOPEN3: case NFA_ZOPEN4: case NFA_ZOPEN5: case NFA_ZOPEN6: case NFA_ZOPEN7: case NFA_ZOPEN8: case NFA_ZOPEN9: STRCPY(code, "NFA_ZOPEN(x)"); code[10] = c - NFA_ZOPEN + '0'; break; case NFA_ZCLOSE: case NFA_ZCLOSE1: case NFA_ZCLOSE2: case NFA_ZCLOSE3: case NFA_ZCLOSE4: case NFA_ZCLOSE5: case NFA_ZCLOSE6: case NFA_ZCLOSE7: case NFA_ZCLOSE8: case NFA_ZCLOSE9: STRCPY(code, "NFA_ZCLOSE(x)"); code[11] = c - NFA_ZCLOSE + '0'; break; #endif case NFA_EOL: STRCPY(code, "NFA_EOL "); break; case NFA_BOL: STRCPY(code, "NFA_BOL "); break; case NFA_EOW: STRCPY(code, "NFA_EOW "); break; case NFA_BOW: STRCPY(code, "NFA_BOW "); break; case NFA_EOF: STRCPY(code, "NFA_EOF "); break; case NFA_BOF: STRCPY(code, "NFA_BOF "); break; case NFA_LNUM: STRCPY(code, "NFA_LNUM "); break; case NFA_LNUM_GT: STRCPY(code, "NFA_LNUM_GT "); break; case NFA_LNUM_LT: STRCPY(code, "NFA_LNUM_LT "); break; case NFA_COL: STRCPY(code, "NFA_COL "); break; case NFA_COL_GT: STRCPY(code, "NFA_COL_GT "); break; case NFA_COL_LT: STRCPY(code, "NFA_COL_LT "); break; case NFA_VCOL: STRCPY(code, "NFA_VCOL "); break; case NFA_VCOL_GT: STRCPY(code, "NFA_VCOL_GT "); break; case NFA_VCOL_LT: STRCPY(code, "NFA_VCOL_LT "); break; case NFA_MARK: STRCPY(code, "NFA_MARK "); break; case NFA_MARK_GT: STRCPY(code, "NFA_MARK_GT "); break; case NFA_MARK_LT: STRCPY(code, "NFA_MARK_LT "); break; case NFA_CURSOR: STRCPY(code, "NFA_CURSOR "); break; case NFA_VISUAL: STRCPY(code, "NFA_VISUAL "); break; case NFA_ANY_COMPOSING: STRCPY(code, "NFA_ANY_COMPOSING "); break; case NFA_STAR: STRCPY(code, "NFA_STAR "); break; case NFA_STAR_NONGREEDY: STRCPY(code, "NFA_STAR_NONGREEDY "); break; case NFA_QUEST: STRCPY(code, "NFA_QUEST"); break; case NFA_QUEST_NONGREEDY: STRCPY(code, "NFA_QUEST_NON_GREEDY"); break; case NFA_EMPTY: STRCPY(code, "NFA_EMPTY"); break; case NFA_OR: STRCPY(code, "NFA_OR"); break; case NFA_START_COLL: STRCPY(code, "NFA_START_COLL"); break; case NFA_END_COLL: STRCPY(code, "NFA_END_COLL"); break; case NFA_START_NEG_COLL: STRCPY(code, "NFA_START_NEG_COLL"); break; case NFA_END_NEG_COLL: STRCPY(code, "NFA_END_NEG_COLL"); break; case NFA_RANGE: STRCPY(code, "NFA_RANGE"); break; case NFA_RANGE_MIN: STRCPY(code, "NFA_RANGE_MIN"); break; case NFA_RANGE_MAX: STRCPY(code, "NFA_RANGE_MAX"); break; case NFA_CLASS_ALNUM: STRCPY(code, "NFA_CLASS_ALNUM"); break; case NFA_CLASS_ALPHA: STRCPY(code, "NFA_CLASS_ALPHA"); break; case NFA_CLASS_BLANK: STRCPY(code, "NFA_CLASS_BLANK"); break; case NFA_CLASS_CNTRL: STRCPY(code, "NFA_CLASS_CNTRL"); break; case NFA_CLASS_DIGIT: STRCPY(code, "NFA_CLASS_DIGIT"); break; case NFA_CLASS_GRAPH: STRCPY(code, "NFA_CLASS_GRAPH"); break; case NFA_CLASS_LOWER: STRCPY(code, "NFA_CLASS_LOWER"); break; case NFA_CLASS_PRINT: STRCPY(code, "NFA_CLASS_PRINT"); break; case NFA_CLASS_PUNCT: STRCPY(code, "NFA_CLASS_PUNCT"); break; case NFA_CLASS_SPACE: STRCPY(code, "NFA_CLASS_SPACE"); break; case NFA_CLASS_UPPER: STRCPY(code, "NFA_CLASS_UPPER"); break; case NFA_CLASS_XDIGIT: STRCPY(code, "NFA_CLASS_XDIGIT"); break; case NFA_CLASS_TAB: STRCPY(code, "NFA_CLASS_TAB"); break; case NFA_CLASS_RETURN: STRCPY(code, "NFA_CLASS_RETURN"); break; case NFA_CLASS_BACKSPACE: STRCPY(code, "NFA_CLASS_BACKSPACE"); break; case NFA_CLASS_ESCAPE: STRCPY(code, "NFA_CLASS_ESCAPE"); break; case NFA_ANY: STRCPY(code, "NFA_ANY"); break; case NFA_IDENT: STRCPY(code, "NFA_IDENT"); break; case NFA_SIDENT:STRCPY(code, "NFA_SIDENT"); break; case NFA_KWORD: STRCPY(code, "NFA_KWORD"); break; case NFA_SKWORD:STRCPY(code, "NFA_SKWORD"); break; case NFA_FNAME: STRCPY(code, "NFA_FNAME"); break; case NFA_SFNAME:STRCPY(code, "NFA_SFNAME"); break; case NFA_PRINT: STRCPY(code, "NFA_PRINT"); break; case NFA_SPRINT:STRCPY(code, "NFA_SPRINT"); break; case NFA_WHITE: STRCPY(code, "NFA_WHITE"); break; case NFA_NWHITE:STRCPY(code, "NFA_NWHITE"); break; case NFA_DIGIT: STRCPY(code, "NFA_DIGIT"); break; case NFA_NDIGIT:STRCPY(code, "NFA_NDIGIT"); break; case NFA_HEX: STRCPY(code, "NFA_HEX"); break; case NFA_NHEX: STRCPY(code, "NFA_NHEX"); break; case NFA_OCTAL: STRCPY(code, "NFA_OCTAL"); break; case NFA_NOCTAL:STRCPY(code, "NFA_NOCTAL"); break; case NFA_WORD: STRCPY(code, "NFA_WORD"); break; case NFA_NWORD: STRCPY(code, "NFA_NWORD"); break; case NFA_HEAD: STRCPY(code, "NFA_HEAD"); break; case NFA_NHEAD: STRCPY(code, "NFA_NHEAD"); break; case NFA_ALPHA: STRCPY(code, "NFA_ALPHA"); break; case NFA_NALPHA:STRCPY(code, "NFA_NALPHA"); break; case NFA_LOWER: STRCPY(code, "NFA_LOWER"); break; case NFA_NLOWER:STRCPY(code, "NFA_NLOWER"); break; case NFA_UPPER: STRCPY(code, "NFA_UPPER"); break; case NFA_NUPPER:STRCPY(code, "NFA_NUPPER"); break; case NFA_LOWER_IC: STRCPY(code, "NFA_LOWER_IC"); break; case NFA_NLOWER_IC: STRCPY(code, "NFA_NLOWER_IC"); break; case NFA_UPPER_IC: STRCPY(code, "NFA_UPPER_IC"); break; case NFA_NUPPER_IC: STRCPY(code, "NFA_NUPPER_IC"); break; default: STRCPY(code, "CHAR(x)"); code[5] = c; } if (addnl == TRUE) STRCAT(code, " + NEWLINE "); } #ifdef ENABLE_LOG static FILE *log_fd; /* * Print the postfix notation of the current regexp. */ static void nfa_postfix_dump(char_u *expr, int retval) { int *p; FILE *f; f = fopen(NFA_REGEXP_DUMP_LOG, "a"); if (f != NULL) { fprintf(f, "\n-------------------------\n"); if (retval == FAIL) fprintf(f, ">>> NFA engine failed ... \n"); else if (retval == OK) fprintf(f, ">>> NFA engine succeeded !\n"); fprintf(f, "Regexp: \"%s\"\nPostfix notation (char): \"", expr); for (p = post_start; *p && p < post_ptr; p++) { nfa_set_code(*p); fprintf(f, "%s, ", code); } fprintf(f, "\"\nPostfix notation (int): "); for (p = post_start; *p && p < post_ptr; p++) fprintf(f, "%d ", *p); fprintf(f, "\n\n"); fclose(f); } } /* * Print the NFA starting with a root node "state". */ static void nfa_print_state(FILE *debugf, nfa_state_T *state) { garray_T indent; ga_init2(&indent, 1, 64); ga_append(&indent, '\0'); nfa_print_state2(debugf, state, &indent); ga_clear(&indent); } static void nfa_print_state2(FILE *debugf, nfa_state_T *state, garray_T *indent) { char_u *p; if (state == NULL) return; fprintf(debugf, "(%2d)", abs(state->id)); /* Output indent */ p = (char_u *)indent->ga_data; if (indent->ga_len >= 3) { int last = indent->ga_len - 3; char_u save[2]; STRNCPY(save, &p[last], 2); STRNCPY(&p[last], "+-", 2); fprintf(debugf, " %s", p); STRNCPY(&p[last], save, 2); } else fprintf(debugf, " %s", p); nfa_set_code(state->c); fprintf(debugf, "%s (%d) (id=%d) val=%d\n", code, state->c, abs(state->id), state->val); if (state->id < 0) return; state->id = abs(state->id) * -1; /* grow indent for state->out */ indent->ga_len -= 1; if (state->out1) ga_concat(indent, (char_u *)"| "); else ga_concat(indent, (char_u *)" "); ga_append(indent, '\0'); nfa_print_state2(debugf, state->out, indent); /* replace last part of indent for state->out1 */ indent->ga_len -= 3; ga_concat(indent, (char_u *)" "); ga_append(indent, '\0'); nfa_print_state2(debugf, state->out1, indent); /* shrink indent */ indent->ga_len -= 3; ga_append(indent, '\0'); } /* * Print the NFA state machine. */ static void nfa_dump(nfa_regprog_T *prog) { FILE *debugf = fopen(NFA_REGEXP_DUMP_LOG, "a"); if (debugf != NULL) { nfa_print_state(debugf, prog->start); if (prog->reganch) fprintf(debugf, "reganch: %d\n", prog->reganch); if (prog->regstart != NUL) fprintf(debugf, "regstart: %c (decimal: %d)\n", prog->regstart, prog->regstart); if (prog->match_text != NULL) fprintf(debugf, "match_text: \"%s\"\n", prog->match_text); fclose(debugf); } } #endif /* ENABLE_LOG */ #endif /* DEBUG */ /* * Parse r.e. @expr and convert it into postfix form. * Return the postfix string on success, NULL otherwise. */ static int * re2post(void) { if (nfa_reg(REG_NOPAREN) == FAIL) return NULL; EMIT(NFA_MOPEN); return post_start; } /* NB. Some of the code below is inspired by Russ's. */ /* * Represents an NFA state plus zero or one or two arrows exiting. * if c == MATCH, no arrows out; matching state. * If c == SPLIT, unlabeled arrows to out and out1 (if != NULL). * If c < 256, labeled arrow with character c to out. */ static nfa_state_T *state_ptr; /* points to nfa_prog->state */ /* * Allocate and initialize nfa_state_T. */ static nfa_state_T * alloc_state(int c, nfa_state_T *out, nfa_state_T *out1) { nfa_state_T *s; if (istate >= nstate) return NULL; s = &state_ptr[istate++]; s->c = c; s->out = out; s->out1 = out1; s->val = 0; s->id = istate; s->lastlist[0] = 0; s->lastlist[1] = 0; return s; } /* * A partially built NFA without the matching state filled in. * Frag_T.start points at the start state. * Frag_T.out is a list of places that need to be set to the * next state for this fragment. */ /* Since the out pointers in the list are always * uninitialized, we use the pointers themselves * as storage for the Ptrlists. */ typedef union Ptrlist Ptrlist; union Ptrlist { Ptrlist *next; nfa_state_T *s; }; struct Frag { nfa_state_T *start; Ptrlist *out; }; typedef struct Frag Frag_T; static Frag_T frag(nfa_state_T *start, Ptrlist *out); static Ptrlist *list1(nfa_state_T **outp); static void patch(Ptrlist *l, nfa_state_T *s); static Ptrlist *append(Ptrlist *l1, Ptrlist *l2); static void st_push(Frag_T s, Frag_T **p, Frag_T *stack_end); static Frag_T st_pop(Frag_T **p, Frag_T *stack); /* * Initialize a Frag_T struct and return it. */ static Frag_T frag(nfa_state_T *start, Ptrlist *out) { Frag_T n; n.start = start; n.out = out; return n; } /* * Create singleton list containing just outp. */ static Ptrlist * list1( nfa_state_T **outp) { Ptrlist *l; l = (Ptrlist *)outp; l->next = NULL; return l; } /* * Patch the list of states at out to point to start. */ static void patch(Ptrlist *l, nfa_state_T *s) { Ptrlist *next; for (; l; l = next) { next = l->next; l->s = s; } } /* * Join the two lists l1 and l2, returning the combination. */ static Ptrlist * append(Ptrlist *l1, Ptrlist *l2) { Ptrlist *oldl1; oldl1 = l1; while (l1->next) l1 = l1->next; l1->next = l2; return oldl1; } /* * Stack used for transforming postfix form into NFA. */ static Frag_T empty; static void st_error(int *postfix UNUSED, int *end UNUSED, int *p UNUSED) { #ifdef NFA_REGEXP_ERROR_LOG FILE *df; int *p2; df = fopen(NFA_REGEXP_ERROR_LOG, "a"); if (df) { fprintf(df, "Error popping the stack!\n"); #ifdef DEBUG fprintf(df, "Current regexp is \"%s\"\n", nfa_regengine.expr); #endif fprintf(df, "Postfix form is: "); #ifdef DEBUG for (p2 = postfix; p2 < end; p2++) { nfa_set_code(*p2); fprintf(df, "%s, ", code); } nfa_set_code(*p); fprintf(df, "\nCurrent position is: "); for (p2 = postfix; p2 <= p; p2 ++) { nfa_set_code(*p2); fprintf(df, "%s, ", code); } #else for (p2 = postfix; p2 < end; p2++) { fprintf(df, "%d, ", *p2); } fprintf(df, "\nCurrent position is: "); for (p2 = postfix; p2 <= p; p2 ++) { fprintf(df, "%d, ", *p2); } #endif fprintf(df, "\n--------------------------\n"); fclose(df); } #endif EMSG(_("E874: (NFA) Could not pop the stack !")); } /* * Push an item onto the stack. */ static void st_push(Frag_T s, Frag_T **p, Frag_T *stack_end) { Frag_T *stackp = *p; if (stackp >= stack_end) return; *stackp = s; *p = *p + 1; } /* * Pop an item from the stack. */ static Frag_T st_pop(Frag_T **p, Frag_T *stack) { Frag_T *stackp; *p = *p - 1; stackp = *p; if (stackp < stack) return empty; return **p; } /* * Estimate the maximum byte length of anything matching "state". * When unknown or unlimited return -1. */ static int nfa_max_width(nfa_state_T *startstate, int depth) { int l, r; nfa_state_T *state = startstate; int len = 0; /* detect looping in a NFA_SPLIT */ if (depth > 4) return -1; while (state != NULL) { switch (state->c) { case NFA_END_INVISIBLE: case NFA_END_INVISIBLE_NEG: /* the end, return what we have */ return len; case NFA_SPLIT: /* two alternatives, use the maximum */ l = nfa_max_width(state->out, depth + 1); r = nfa_max_width(state->out1, depth + 1); if (l < 0 || r < 0) return -1; return len + (l > r ? l : r); case NFA_ANY: case NFA_START_COLL: case NFA_START_NEG_COLL: /* matches some character, including composing chars */ #ifdef FEAT_MBYTE if (enc_utf8) len += MB_MAXBYTES; else if (has_mbyte) len += 2; else #endif ++len; if (state->c != NFA_ANY) { /* skip over the characters */ state = state->out1->out; continue; } break; case NFA_DIGIT: case NFA_WHITE: case NFA_HEX: case NFA_OCTAL: /* ascii */ ++len; break; case NFA_IDENT: case NFA_SIDENT: case NFA_KWORD: case NFA_SKWORD: case NFA_FNAME: case NFA_SFNAME: case NFA_PRINT: case NFA_SPRINT: case NFA_NWHITE: case NFA_NDIGIT: case NFA_NHEX: case NFA_NOCTAL: case NFA_WORD: case NFA_NWORD: case NFA_HEAD: case NFA_NHEAD: case NFA_ALPHA: case NFA_NALPHA: case NFA_LOWER: case NFA_NLOWER: case NFA_UPPER: case NFA_NUPPER: case NFA_LOWER_IC: case NFA_NLOWER_IC: case NFA_UPPER_IC: case NFA_NUPPER_IC: case NFA_ANY_COMPOSING: /* possibly non-ascii */ #ifdef FEAT_MBYTE if (has_mbyte) len += 3; else #endif ++len; break; case NFA_START_INVISIBLE: case NFA_START_INVISIBLE_NEG: case NFA_START_INVISIBLE_BEFORE: case NFA_START_INVISIBLE_BEFORE_NEG: /* zero-width, out1 points to the END state */ state = state->out1->out; continue; case NFA_BACKREF1: case NFA_BACKREF2: case NFA_BACKREF3: case NFA_BACKREF4: case NFA_BACKREF5: case NFA_BACKREF6: case NFA_BACKREF7: case NFA_BACKREF8: case NFA_BACKREF9: #ifdef FEAT_SYN_HL case NFA_ZREF1: case NFA_ZREF2: case NFA_ZREF3: case NFA_ZREF4: case NFA_ZREF5: case NFA_ZREF6: case NFA_ZREF7: case NFA_ZREF8: case NFA_ZREF9: #endif case NFA_NEWL: case NFA_SKIP: /* unknown width */ return -1; case NFA_BOL: case NFA_EOL: case NFA_BOF: case NFA_EOF: case NFA_BOW: case NFA_EOW: case NFA_MOPEN: case NFA_MOPEN1: case NFA_MOPEN2: case NFA_MOPEN3: case NFA_MOPEN4: case NFA_MOPEN5: case NFA_MOPEN6: case NFA_MOPEN7: case NFA_MOPEN8: case NFA_MOPEN9: #ifdef FEAT_SYN_HL case NFA_ZOPEN: case NFA_ZOPEN1: case NFA_ZOPEN2: case NFA_ZOPEN3: case NFA_ZOPEN4: case NFA_ZOPEN5: case NFA_ZOPEN6: case NFA_ZOPEN7: case NFA_ZOPEN8: case NFA_ZOPEN9: case NFA_ZCLOSE: case NFA_ZCLOSE1: case NFA_ZCLOSE2: case NFA_ZCLOSE3: case NFA_ZCLOSE4: case NFA_ZCLOSE5: case NFA_ZCLOSE6: case NFA_ZCLOSE7: case NFA_ZCLOSE8: case NFA_ZCLOSE9: #endif case NFA_MCLOSE: case NFA_MCLOSE1: case NFA_MCLOSE2: case NFA_MCLOSE3: case NFA_MCLOSE4: case NFA_MCLOSE5: case NFA_MCLOSE6: case NFA_MCLOSE7: case NFA_MCLOSE8: case NFA_MCLOSE9: case NFA_NOPEN: case NFA_NCLOSE: case NFA_LNUM_GT: case NFA_LNUM_LT: case NFA_COL_GT: case NFA_COL_LT: case NFA_VCOL_GT: case NFA_VCOL_LT: case NFA_MARK_GT: case NFA_MARK_LT: case NFA_VISUAL: case NFA_LNUM: case NFA_CURSOR: case NFA_COL: case NFA_VCOL: case NFA_MARK: case NFA_ZSTART: case NFA_ZEND: case NFA_OPT_CHARS: case NFA_EMPTY: case NFA_START_PATTERN: case NFA_END_PATTERN: case NFA_COMPOSING: case NFA_END_COMPOSING: /* zero-width */ break; default: if (state->c < 0) /* don't know what this is */ return -1; /* normal character */ len += MB_CHAR2LEN(state->c); break; } /* normal way to continue */ state = state->out; } /* unrecognized, "cannot happen" */ return -1; } /* * Convert a postfix form into its equivalent NFA. * Return the NFA start state on success, NULL otherwise. */ static nfa_state_T * post2nfa(int *postfix, int *end, int nfa_calc_size) { int *p; int mopen; int mclose; Frag_T *stack = NULL; Frag_T *stackp = NULL; Frag_T *stack_end = NULL; Frag_T e1; Frag_T e2; Frag_T e; nfa_state_T *s; nfa_state_T *s1; nfa_state_T *matchstate; nfa_state_T *ret = NULL; if (postfix == NULL) return NULL; #define PUSH(s) st_push((s), &stackp, stack_end) #define POP() st_pop(&stackp, stack); \ if (stackp < stack) \ { \ st_error(postfix, end, p); \ vim_free(stack); \ return NULL; \ } if (nfa_calc_size == FALSE) { /* Allocate space for the stack. Max states on the stack : nstate */ stack = (Frag_T *)lalloc((nstate + 1) * sizeof(Frag_T), TRUE); stackp = stack; stack_end = stack + (nstate + 1); } for (p = postfix; p < end; ++p) { switch (*p) { case NFA_CONCAT: /* Concatenation. * Pay attention: this operator does not exist in the r.e. itself * (it is implicit, really). It is added when r.e. is translated * to postfix form in re2post(). */ if (nfa_calc_size == TRUE) { /* nstate += 0; */ break; } e2 = POP(); e1 = POP(); patch(e1.out, e2.start); PUSH(frag(e1.start, e2.out)); break; case NFA_OR: /* Alternation */ if (nfa_calc_size == TRUE) { nstate++; break; } e2 = POP(); e1 = POP(); s = alloc_state(NFA_SPLIT, e1.start, e2.start); if (s == NULL) goto theend; PUSH(frag(s, append(e1.out, e2.out))); break; case NFA_STAR: /* Zero or more, prefer more */ if (nfa_calc_size == TRUE) { nstate++; break; } e = POP(); s = alloc_state(NFA_SPLIT, e.start, NULL); if (s == NULL) goto theend; patch(e.out, s); PUSH(frag(s, list1(&s->out1))); break; case NFA_STAR_NONGREEDY: /* Zero or more, prefer zero */ if (nfa_calc_size == TRUE) { nstate++; break; } e = POP(); s = alloc_state(NFA_SPLIT, NULL, e.start); if (s == NULL) goto theend; patch(e.out, s); PUSH(frag(s, list1(&s->out))); break; case NFA_QUEST: /* one or zero atoms=> greedy match */ if (nfa_calc_size == TRUE) { nstate++; break; } e = POP(); s = alloc_state(NFA_SPLIT, e.start, NULL); if (s == NULL) goto theend; PUSH(frag(s, append(e.out, list1(&s->out1)))); break; case NFA_QUEST_NONGREEDY: /* zero or one atoms => non-greedy match */ if (nfa_calc_size == TRUE) { nstate++; break; } e = POP(); s = alloc_state(NFA_SPLIT, NULL, e.start); if (s == NULL) goto theend; PUSH(frag(s, append(e.out, list1(&s->out)))); break; case NFA_END_COLL: case NFA_END_NEG_COLL: /* On the stack is the sequence starting with NFA_START_COLL or * NFA_START_NEG_COLL and all possible characters. Patch it to * add the output to the start. */ if (nfa_calc_size == TRUE) { nstate++; break; } e = POP(); s = alloc_state(NFA_END_COLL, NULL, NULL); if (s == NULL) goto theend; patch(e.out, s); e.start->out1 = s; PUSH(frag(e.start, list1(&s->out))); break; case NFA_RANGE: /* Before this are two characters, the low and high end of a * range. Turn them into two states with MIN and MAX. */ if (nfa_calc_size == TRUE) { /* nstate += 0; */ break; } e2 = POP(); e1 = POP(); e2.start->val = e2.start->c; e2.start->c = NFA_RANGE_MAX; e1.start->val = e1.start->c; e1.start->c = NFA_RANGE_MIN; patch(e1.out, e2.start); PUSH(frag(e1.start, e2.out)); break; case NFA_EMPTY: /* 0-length, used in a repetition with max/min count of 0 */ if (nfa_calc_size == TRUE) { nstate++; break; } s = alloc_state(NFA_EMPTY, NULL, NULL); if (s == NULL) goto theend; PUSH(frag(s, list1(&s->out))); break; case NFA_OPT_CHARS: { int n; /* \%[abc] implemented as: * NFA_SPLIT * +-CHAR(a) * | +-NFA_SPLIT * | +-CHAR(b) * | | +-NFA_SPLIT * | | +-CHAR(c) * | | | +-next * | | +- next * | +- next * +- next */ n = *++p; /* get number of characters */ if (nfa_calc_size == TRUE) { nstate += n; break; } s = NULL; /* avoid compiler warning */ e1.out = NULL; /* stores list with out1's */ s1 = NULL; /* previous NFA_SPLIT to connect to */ while (n-- > 0) { e = POP(); /* get character */ s = alloc_state(NFA_SPLIT, e.start, NULL); if (s == NULL) goto theend; if (e1.out == NULL) e1 = e; patch(e.out, s1); append(e1.out, list1(&s->out1)); s1 = s; } PUSH(frag(s, e1.out)); break; } case NFA_PREV_ATOM_NO_WIDTH: case NFA_PREV_ATOM_NO_WIDTH_NEG: case NFA_PREV_ATOM_JUST_BEFORE: case NFA_PREV_ATOM_JUST_BEFORE_NEG: case NFA_PREV_ATOM_LIKE_PATTERN: { int before = (*p == NFA_PREV_ATOM_JUST_BEFORE || *p == NFA_PREV_ATOM_JUST_BEFORE_NEG); int pattern = (*p == NFA_PREV_ATOM_LIKE_PATTERN); int start_state; int end_state; int n = 0; nfa_state_T *zend; nfa_state_T *skip; switch (*p) { case NFA_PREV_ATOM_NO_WIDTH: start_state = NFA_START_INVISIBLE; end_state = NFA_END_INVISIBLE; break; case NFA_PREV_ATOM_NO_WIDTH_NEG: start_state = NFA_START_INVISIBLE_NEG; end_state = NFA_END_INVISIBLE_NEG; break; case NFA_PREV_ATOM_JUST_BEFORE: start_state = NFA_START_INVISIBLE_BEFORE; end_state = NFA_END_INVISIBLE; break; case NFA_PREV_ATOM_JUST_BEFORE_NEG: start_state = NFA_START_INVISIBLE_BEFORE_NEG; end_state = NFA_END_INVISIBLE_NEG; break; default: /* NFA_PREV_ATOM_LIKE_PATTERN: */ start_state = NFA_START_PATTERN; end_state = NFA_END_PATTERN; break; } if (before) n = *++p; /* get the count */ /* The \@= operator: match the preceding atom with zero width. * The \@! operator: no match for the preceding atom. * The \@<= operator: match for the preceding atom. * The \@<! operator: no match for the preceding atom. * Surrounds the preceding atom with START_INVISIBLE and * END_INVISIBLE, similarly to MOPEN. */ if (nfa_calc_size == TRUE) { nstate += pattern ? 4 : 2; break; } e = POP(); s1 = alloc_state(end_state, NULL, NULL); if (s1 == NULL) goto theend; s = alloc_state(start_state, e.start, s1); if (s == NULL) goto theend; if (pattern) { /* NFA_ZEND -> NFA_END_PATTERN -> NFA_SKIP -> what follows. */ skip = alloc_state(NFA_SKIP, NULL, NULL); zend = alloc_state(NFA_ZEND, s1, NULL); s1->out= skip; patch(e.out, zend); PUSH(frag(s, list1(&skip->out))); } else { patch(e.out, s1); PUSH(frag(s, list1(&s1->out))); if (before) { if (n <= 0) /* See if we can guess the maximum width, it avoids a * lot of pointless tries. */ n = nfa_max_width(e.start, 0); s->val = n; /* store the count */ } } break; } #ifdef FEAT_MBYTE case NFA_COMPOSING: /* char with composing char */ #if 0 /* TODO */ if (regflags & RF_ICOMBINE) { /* use the base character only */ } #endif /* FALLTHROUGH */ #endif case NFA_MOPEN: /* \( \) Submatch */ case NFA_MOPEN1: case NFA_MOPEN2: case NFA_MOPEN3: case NFA_MOPEN4: case NFA_MOPEN5: case NFA_MOPEN6: case NFA_MOPEN7: case NFA_MOPEN8: case NFA_MOPEN9: #ifdef FEAT_SYN_HL case NFA_ZOPEN: /* \z( \) Submatch */ case NFA_ZOPEN1: case NFA_ZOPEN2: case NFA_ZOPEN3: case NFA_ZOPEN4: case NFA_ZOPEN5: case NFA_ZOPEN6: case NFA_ZOPEN7: case NFA_ZOPEN8: case NFA_ZOPEN9: #endif case NFA_NOPEN: /* \%( \) "Invisible Submatch" */ if (nfa_calc_size == TRUE) { nstate += 2; break; } mopen = *p; switch (*p) { case NFA_NOPEN: mclose = NFA_NCLOSE; break; #ifdef FEAT_SYN_HL case NFA_ZOPEN: mclose = NFA_ZCLOSE; break; case NFA_ZOPEN1: mclose = NFA_ZCLOSE1; break; case NFA_ZOPEN2: mclose = NFA_ZCLOSE2; break; case NFA_ZOPEN3: mclose = NFA_ZCLOSE3; break; case NFA_ZOPEN4: mclose = NFA_ZCLOSE4; break; case NFA_ZOPEN5: mclose = NFA_ZCLOSE5; break; case NFA_ZOPEN6: mclose = NFA_ZCLOSE6; break; case NFA_ZOPEN7: mclose = NFA_ZCLOSE7; break; case NFA_ZOPEN8: mclose = NFA_ZCLOSE8; break; case NFA_ZOPEN9: mclose = NFA_ZCLOSE9; break; #endif #ifdef FEAT_MBYTE case NFA_COMPOSING: mclose = NFA_END_COMPOSING; break; #endif default: /* NFA_MOPEN, NFA_MOPEN1 .. NFA_MOPEN9 */ mclose = *p + NSUBEXP; break; } /* Allow "NFA_MOPEN" as a valid postfix representation for * the empty regexp "". In this case, the NFA will be * NFA_MOPEN -> NFA_MCLOSE. Note that this also allows * empty groups of parenthesis, and empty mbyte chars */ if (stackp == stack) { s = alloc_state(mopen, NULL, NULL); if (s == NULL) goto theend; s1 = alloc_state(mclose, NULL, NULL); if (s1 == NULL) goto theend; patch(list1(&s->out), s1); PUSH(frag(s, list1(&s1->out))); break; } /* At least one node was emitted before NFA_MOPEN, so * at least one node will be between NFA_MOPEN and NFA_MCLOSE */ e = POP(); s = alloc_state(mopen, e.start, NULL); /* `(' */ if (s == NULL) goto theend; s1 = alloc_state(mclose, NULL, NULL); /* `)' */ if (s1 == NULL) goto theend; patch(e.out, s1); #ifdef FEAT_MBYTE if (mopen == NFA_COMPOSING) /* COMPOSING->out1 = END_COMPOSING */ patch(list1(&s->out1), s1); #endif PUSH(frag(s, list1(&s1->out))); break; case NFA_BACKREF1: case NFA_BACKREF2: case NFA_BACKREF3: case NFA_BACKREF4: case NFA_BACKREF5: case NFA_BACKREF6: case NFA_BACKREF7: case NFA_BACKREF8: case NFA_BACKREF9: #ifdef FEAT_SYN_HL case NFA_ZREF1: case NFA_ZREF2: case NFA_ZREF3: case NFA_ZREF4: case NFA_ZREF5: case NFA_ZREF6: case NFA_ZREF7: case NFA_ZREF8: case NFA_ZREF9: #endif if (nfa_calc_size == TRUE) { nstate += 2; break; } s = alloc_state(*p, NULL, NULL); if (s == NULL) goto theend; s1 = alloc_state(NFA_SKIP, NULL, NULL); if (s1 == NULL) goto theend; patch(list1(&s->out), s1); PUSH(frag(s, list1(&s1->out))); break; case NFA_LNUM: case NFA_LNUM_GT: case NFA_LNUM_LT: case NFA_VCOL: case NFA_VCOL_GT: case NFA_VCOL_LT: case NFA_COL: case NFA_COL_GT: case NFA_COL_LT: case NFA_MARK: case NFA_MARK_GT: case NFA_MARK_LT: { int n = *++p; /* lnum, col or mark name */ if (nfa_calc_size == TRUE) { nstate += 1; break; } s = alloc_state(p[-1], NULL, NULL); if (s == NULL) goto theend; s->val = n; PUSH(frag(s, list1(&s->out))); break; } case NFA_ZSTART: case NFA_ZEND: default: /* Operands */ if (nfa_calc_size == TRUE) { nstate++; break; } s = alloc_state(*p, NULL, NULL); if (s == NULL) goto theend; PUSH(frag(s, list1(&s->out))); break; } /* switch(*p) */ } /* for(p = postfix; *p; ++p) */ if (nfa_calc_size == TRUE) { nstate++; goto theend; /* Return value when counting size is ignored anyway */ } e = POP(); if (stackp != stack) { vim_free(stack); EMSG_RET_NULL(_("E875: (NFA regexp) (While converting from postfix to NFA), too many states left on stack")); } if (istate >= nstate) { vim_free(stack); EMSG_RET_NULL(_("E876: (NFA regexp) Not enough space to store the whole NFA ")); } matchstate = &state_ptr[istate++]; /* the match state */ matchstate->c = NFA_MATCH; matchstate->out = matchstate->out1 = NULL; matchstate->id = 0; patch(e.out, matchstate); ret = e.start; theend: vim_free(stack); return ret; #undef POP1 #undef PUSH1 #undef POP2 #undef PUSH2 #undef POP #undef PUSH } /* * After building the NFA program, inspect it to add optimization hints. */ static void nfa_postprocess(nfa_regprog_T *prog) { int i; int c; for (i = 0; i < prog->nstate; ++i) { c = prog->state[i].c; if (c == NFA_START_INVISIBLE || c == NFA_START_INVISIBLE_NEG || c == NFA_START_INVISIBLE_BEFORE || c == NFA_START_INVISIBLE_BEFORE_NEG) { int directly; /* Do it directly when what follows is possibly the end of the * match. */ if (match_follows(prog->state[i].out1->out, 0)) directly = TRUE; else { int ch_invisible = failure_chance(prog->state[i].out, 0); int ch_follows = failure_chance(prog->state[i].out1->out, 0); /* Postpone when the invisible match is expensive or has a * lower chance of failing. */ if (c == NFA_START_INVISIBLE_BEFORE || c == NFA_START_INVISIBLE_BEFORE_NEG) { /* "before" matches are very expensive when * unbounded, always prefer what follows then, * unless what follows will always match. * Otherwise strongly prefer what follows. */ if (prog->state[i].val <= 0 && ch_follows > 0) directly = FALSE; else directly = ch_follows * 10 < ch_invisible; } else { /* normal invisible, first do the one with the * highest failure chance */ directly = ch_follows < ch_invisible; } } if (directly) /* switch to the _FIRST state */ ++prog->state[i].c; } } } /**************************************************************** * NFA execution code. ****************************************************************/ typedef struct { int in_use; /* number of subexpr with useful info */ /* When REG_MULTI is TRUE list.multi is used, otherwise list.line. */ union { struct multipos { linenr_T start_lnum; linenr_T end_lnum; colnr_T start_col; colnr_T end_col; } multi[NSUBEXP]; struct linepos { char_u *start; char_u *end; } line[NSUBEXP]; } list; } regsub_T; typedef struct { regsub_T norm; /* \( .. \) matches */ #ifdef FEAT_SYN_HL regsub_T synt; /* \z( .. \) matches */ #endif } regsubs_T; /* nfa_pim_T stores a Postponed Invisible Match. */ typedef struct nfa_pim_S nfa_pim_T; struct nfa_pim_S { int result; /* NFA_PIM_*, see below */ nfa_state_T *state; /* the invisible match start state */ regsubs_T subs; /* submatch info, only party used */ union { lpos_T pos; char_u *ptr; } end; /* where the match must end */ }; /* Values for done in nfa_pim_T. */ #define NFA_PIM_UNUSED 0 /* pim not used */ #define NFA_PIM_TODO 1 /* pim not done yet */ #define NFA_PIM_MATCH 2 /* pim executed, matches */ #define NFA_PIM_NOMATCH 3 /* pim executed, no match */ /* nfa_thread_T contains execution information of a NFA state */ typedef struct { nfa_state_T *state; int count; nfa_pim_T pim; /* if pim.result != NFA_PIM_UNUSED: postponed * invisible match */ regsubs_T subs; /* submatch info, only party used */ } nfa_thread_T; /* nfa_list_T contains the alternative NFA execution states. */ typedef struct { nfa_thread_T *t; /* allocated array of states */ int n; /* nr of states currently in "t" */ int len; /* max nr of states in "t" */ int id; /* ID of the list */ int has_pim; /* TRUE when any state has a PIM */ } nfa_list_T; #ifdef ENABLE_LOG static void log_subsexpr(regsubs_T *subs); static void log_subexpr(regsub_T *sub); static char *pim_info(nfa_pim_T *pim); static void log_subsexpr(regsubs_T *subs) { log_subexpr(&subs->norm); # ifdef FEAT_SYN_HL if (nfa_has_zsubexpr) log_subexpr(&subs->synt); # endif } static void log_subexpr(regsub_T *sub) { int j; for (j = 0; j < sub->in_use; j++) if (REG_MULTI) fprintf(log_fd, "*** group %d, start: c=%d, l=%d, end: c=%d, l=%d\n", j, sub->list.multi[j].start_col, (int)sub->list.multi[j].start_lnum, sub->list.multi[j].end_col, (int)sub->list.multi[j].end_lnum); else { char *s = (char *)sub->list.line[j].start; char *e = (char *)sub->list.line[j].end; fprintf(log_fd, "*** group %d, start: \"%s\", end: \"%s\"\n", j, s == NULL ? "NULL" : s, e == NULL ? "NULL" : e); } } static char * pim_info(nfa_pim_T *pim) { static char buf[30]; if (pim == NULL || pim->result == NFA_PIM_UNUSED) buf[0] = NUL; else { sprintf(buf, " PIM col %d", REG_MULTI ? (int)pim->end.pos.col : (int)(pim->end.ptr - reginput)); } return buf; } #endif /* Used during execution: whether a match has been found. */ static int nfa_match; #ifdef FEAT_RELTIME static proftime_T *nfa_time_limit; static int nfa_time_count; #endif static void copy_pim(nfa_pim_T *to, nfa_pim_T *from); static void clear_sub(regsub_T *sub); static void copy_sub(regsub_T *to, regsub_T *from); static void copy_sub_off(regsub_T *to, regsub_T *from); static void copy_ze_off(regsub_T *to, regsub_T *from); static int sub_equal(regsub_T *sub1, regsub_T *sub2); static int match_backref(regsub_T *sub, int subidx, int *bytelen); static int has_state_with_pos(nfa_list_T *l, nfa_state_T *state, regsubs_T *subs, nfa_pim_T *pim); static int pim_equal(nfa_pim_T *one, nfa_pim_T *two); static int state_in_list(nfa_list_T *l, nfa_state_T *state, regsubs_T *subs); static regsubs_T *addstate(nfa_list_T *l, nfa_state_T *state, regsubs_T *subs_arg, nfa_pim_T *pim, int off); static void addstate_here(nfa_list_T *l, nfa_state_T *state, regsubs_T *subs, nfa_pim_T *pim, int *ip); /* * Copy postponed invisible match info from "from" to "to". */ static void copy_pim(nfa_pim_T *to, nfa_pim_T *from) { to->result = from->result; to->state = from->state; copy_sub(&to->subs.norm, &from->subs.norm); #ifdef FEAT_SYN_HL if (nfa_has_zsubexpr) copy_sub(&to->subs.synt, &from->subs.synt); #endif to->end = from->end; } static void clear_sub(regsub_T *sub) { if (REG_MULTI) /* Use 0xff to set lnum to -1 */ vim_memset(sub->list.multi, 0xff, sizeof(struct multipos) * nfa_nsubexpr); else vim_memset(sub->list.line, 0, sizeof(struct linepos) * nfa_nsubexpr); sub->in_use = 0; } /* * Copy the submatches from "from" to "to". */ static void copy_sub(regsub_T *to, regsub_T *from) { to->in_use = from->in_use; if (from->in_use > 0) { /* Copy the match start and end positions. */ if (REG_MULTI) mch_memmove(&to->list.multi[0], &from->list.multi[0], sizeof(struct multipos) * from->in_use); else mch_memmove(&to->list.line[0], &from->list.line[0], sizeof(struct linepos) * from->in_use); } } /* * Like copy_sub() but exclude the main match. */ static void copy_sub_off(regsub_T *to, regsub_T *from) { if (to->in_use < from->in_use) to->in_use = from->in_use; if (from->in_use > 1) { /* Copy the match start and end positions. */ if (REG_MULTI) mch_memmove(&to->list.multi[1], &from->list.multi[1], sizeof(struct multipos) * (from->in_use - 1)); else mch_memmove(&to->list.line[1], &from->list.line[1], sizeof(struct linepos) * (from->in_use - 1)); } } /* * Like copy_sub() but only do the end of the main match if \ze is present. */ static void copy_ze_off(regsub_T *to, regsub_T *from) { if (nfa_has_zend) { if (REG_MULTI) { if (from->list.multi[0].end_lnum >= 0) { to->list.multi[0].end_lnum = from->list.multi[0].end_lnum; to->list.multi[0].end_col = from->list.multi[0].end_col; } } else { if (from->list.line[0].end != NULL) to->list.line[0].end = from->list.line[0].end; } } } /* * Return TRUE if "sub1" and "sub2" have the same start positions. * When using back-references also check the end position. */ static int sub_equal(regsub_T *sub1, regsub_T *sub2) { int i; int todo; linenr_T s1; linenr_T s2; char_u *sp1; char_u *sp2; todo = sub1->in_use > sub2->in_use ? sub1->in_use : sub2->in_use; if (REG_MULTI) { for (i = 0; i < todo; ++i) { if (i < sub1->in_use) s1 = sub1->list.multi[i].start_lnum; else s1 = -1; if (i < sub2->in_use) s2 = sub2->list.multi[i].start_lnum; else s2 = -1; if (s1 != s2) return FALSE; if (s1 != -1 && sub1->list.multi[i].start_col != sub2->list.multi[i].start_col) return FALSE; if (nfa_has_backref) { if (i < sub1->in_use) s1 = sub1->list.multi[i].end_lnum; else s1 = -1; if (i < sub2->in_use) s2 = sub2->list.multi[i].end_lnum; else s2 = -1; if (s1 != s2) return FALSE; if (s1 != -1 && sub1->list.multi[i].end_col != sub2->list.multi[i].end_col) return FALSE; } } } else { for (i = 0; i < todo; ++i) { if (i < sub1->in_use) sp1 = sub1->list.line[i].start; else sp1 = NULL; if (i < sub2->in_use) sp2 = sub2->list.line[i].start; else sp2 = NULL; if (sp1 != sp2) return FALSE; if (nfa_has_backref) { if (i < sub1->in_use) sp1 = sub1->list.line[i].end; else sp1 = NULL; if (i < sub2->in_use) sp2 = sub2->list.line[i].end; else sp2 = NULL; if (sp1 != sp2) return FALSE; } } } return TRUE; } #ifdef ENABLE_LOG static void report_state(char *action, regsub_T *sub, nfa_state_T *state, int lid, nfa_pim_T *pim) { int col; if (sub->in_use <= 0) col = -1; else if (REG_MULTI) col = sub->list.multi[0].start_col; else col = (int)(sub->list.line[0].start - regline); nfa_set_code(state->c); fprintf(log_fd, "> %s state %d to list %d. char %d: %s (start col %d)%s\n", action, abs(state->id), lid, state->c, code, col, pim_info(pim)); } #endif /* * Return TRUE if the same state is already in list "l" with the same * positions as "subs". */ static int has_state_with_pos( nfa_list_T *l, /* runtime state list */ nfa_state_T *state, /* state to update */ regsubs_T *subs, /* pointers to subexpressions */ nfa_pim_T *pim) /* postponed match or NULL */ { nfa_thread_T *thread; int i; for (i = 0; i < l->n; ++i) { thread = &l->t[i]; if (thread->state->id == state->id && sub_equal(&thread->subs.norm, &subs->norm) #ifdef FEAT_SYN_HL && (!nfa_has_zsubexpr || sub_equal(&thread->subs.synt, &subs->synt)) #endif && pim_equal(&thread->pim, pim)) return TRUE; } return FALSE; } /* * Return TRUE if "one" and "two" are equal. That includes when both are not * set. */ static int pim_equal(nfa_pim_T *one, nfa_pim_T *two) { int one_unused = (one == NULL || one->result == NFA_PIM_UNUSED); int two_unused = (two == NULL || two->result == NFA_PIM_UNUSED); if (one_unused) /* one is unused: equal when two is also unused */ return two_unused; if (two_unused) /* one is used and two is not: not equal */ return FALSE; /* compare the state id */ if (one->state->id != two->state->id) return FALSE; /* compare the position */ if (REG_MULTI) return one->end.pos.lnum == two->end.pos.lnum && one->end.pos.col == two->end.pos.col; return one->end.ptr == two->end.ptr; } /* * Return TRUE if "state" leads to a NFA_MATCH without advancing the input. */ static int match_follows(nfa_state_T *startstate, int depth) { nfa_state_T *state = startstate; /* avoid too much recursion */ if (depth > 10) return FALSE; while (state != NULL) { switch (state->c) { case NFA_MATCH: case NFA_MCLOSE: case NFA_END_INVISIBLE: case NFA_END_INVISIBLE_NEG: case NFA_END_PATTERN: return TRUE; case NFA_SPLIT: return match_follows(state->out, depth + 1) || match_follows(state->out1, depth + 1); case NFA_START_INVISIBLE: case NFA_START_INVISIBLE_FIRST: case NFA_START_INVISIBLE_BEFORE: case NFA_START_INVISIBLE_BEFORE_FIRST: case NFA_START_INVISIBLE_NEG: case NFA_START_INVISIBLE_NEG_FIRST: case NFA_START_INVISIBLE_BEFORE_NEG: case NFA_START_INVISIBLE_BEFORE_NEG_FIRST: case NFA_COMPOSING: /* skip ahead to next state */ state = state->out1->out; continue; case NFA_ANY: case NFA_ANY_COMPOSING: case NFA_IDENT: case NFA_SIDENT: case NFA_KWORD: case NFA_SKWORD: case NFA_FNAME: case NFA_SFNAME: case NFA_PRINT: case NFA_SPRINT: case NFA_WHITE: case NFA_NWHITE: case NFA_DIGIT: case NFA_NDIGIT: case NFA_HEX: case NFA_NHEX: case NFA_OCTAL: case NFA_NOCTAL: case NFA_WORD: case NFA_NWORD: case NFA_HEAD: case NFA_NHEAD: case NFA_ALPHA: case NFA_NALPHA: case NFA_LOWER: case NFA_NLOWER: case NFA_UPPER: case NFA_NUPPER: case NFA_LOWER_IC: case NFA_NLOWER_IC: case NFA_UPPER_IC: case NFA_NUPPER_IC: case NFA_START_COLL: case NFA_START_NEG_COLL: case NFA_NEWL: /* state will advance input */ return FALSE; default: if (state->c > 0) /* state will advance input */ return FALSE; /* Others: zero-width or possibly zero-width, might still find * a match at the same position, keep looking. */ break; } state = state->out; } return FALSE; } /* * Return TRUE if "state" is already in list "l". */ static int state_in_list( nfa_list_T *l, /* runtime state list */ nfa_state_T *state, /* state to update */ regsubs_T *subs) /* pointers to subexpressions */ { if (state->lastlist[nfa_ll_index] == l->id) { if (!nfa_has_backref || has_state_with_pos(l, state, subs, NULL)) return TRUE; } return FALSE; } /* * Add "state" and possibly what follows to state list ".". * Returns "subs_arg", possibly copied into temp_subs. */ static regsubs_T * addstate( nfa_list_T *l, /* runtime state list */ nfa_state_T *state, /* state to update */ regsubs_T *subs_arg, /* pointers to subexpressions */ nfa_pim_T *pim, /* postponed look-behind match */ int off) /* byte offset, when -1 go to next line */ { int subidx; nfa_thread_T *thread; lpos_T save_lpos; int save_in_use; char_u *save_ptr; int i; regsub_T *sub; regsubs_T *subs = subs_arg; static regsubs_T temp_subs; #ifdef ENABLE_LOG int did_print = FALSE; #endif switch (state->c) { case NFA_NCLOSE: case NFA_MCLOSE: case NFA_MCLOSE1: case NFA_MCLOSE2: case NFA_MCLOSE3: case NFA_MCLOSE4: case NFA_MCLOSE5: case NFA_MCLOSE6: case NFA_MCLOSE7: case NFA_MCLOSE8: case NFA_MCLOSE9: #ifdef FEAT_SYN_HL case NFA_ZCLOSE: case NFA_ZCLOSE1: case NFA_ZCLOSE2: case NFA_ZCLOSE3: case NFA_ZCLOSE4: case NFA_ZCLOSE5: case NFA_ZCLOSE6: case NFA_ZCLOSE7: case NFA_ZCLOSE8: case NFA_ZCLOSE9: #endif case NFA_MOPEN: case NFA_ZEND: case NFA_SPLIT: case NFA_EMPTY: /* These nodes are not added themselves but their "out" and/or * "out1" may be added below. */ break; case NFA_BOL: case NFA_BOF: /* "^" won't match past end-of-line, don't bother trying. * Except when at the end of the line, or when we are going to the * next line for a look-behind match. */ if (reginput > regline && *reginput != NUL && (nfa_endp == NULL || !REG_MULTI || reglnum == nfa_endp->se_u.pos.lnum)) goto skip_add; /* FALLTHROUGH */ case NFA_MOPEN1: case NFA_MOPEN2: case NFA_MOPEN3: case NFA_MOPEN4: case NFA_MOPEN5: case NFA_MOPEN6: case NFA_MOPEN7: case NFA_MOPEN8: case NFA_MOPEN9: #ifdef FEAT_SYN_HL case NFA_ZOPEN: case NFA_ZOPEN1: case NFA_ZOPEN2: case NFA_ZOPEN3: case NFA_ZOPEN4: case NFA_ZOPEN5: case NFA_ZOPEN6: case NFA_ZOPEN7: case NFA_ZOPEN8: case NFA_ZOPEN9: #endif case NFA_NOPEN: case NFA_ZSTART: /* These nodes need to be added so that we can bail out when it * was added to this list before at the same position to avoid an * endless loop for "\(\)*" */ default: if (state->lastlist[nfa_ll_index] == l->id && state->c != NFA_SKIP) { /* This state is already in the list, don't add it again, * unless it is an MOPEN that is used for a backreference or * when there is a PIM. For NFA_MATCH check the position, * lower position is preferred. */ if (!nfa_has_backref && pim == NULL && !l->has_pim && state->c != NFA_MATCH) { skip_add: #ifdef ENABLE_LOG nfa_set_code(state->c); fprintf(log_fd, "> Not adding state %d to list %d. char %d: %s\n", abs(state->id), l->id, state->c, code); #endif return subs; } /* Do not add the state again when it exists with the same * positions. */ if (has_state_with_pos(l, state, subs, pim)) goto skip_add; } /* When there are backreferences or PIMs the number of states may * be (a lot) bigger than anticipated. */ if (l->n == l->len) { int newlen = l->len * 3 / 2 + 50; if (subs != &temp_subs) { /* "subs" may point into the current array, need to make a * copy before it becomes invalid. */ copy_sub(&temp_subs.norm, &subs->norm); #ifdef FEAT_SYN_HL if (nfa_has_zsubexpr) copy_sub(&temp_subs.synt, &subs->synt); #endif subs = &temp_subs; } /* TODO: check for vim_realloc() returning NULL. */ l->t = vim_realloc(l->t, newlen * sizeof(nfa_thread_T)); l->len = newlen; } /* add the state to the list */ state->lastlist[nfa_ll_index] = l->id; thread = &l->t[l->n++]; thread->state = state; if (pim == NULL) thread->pim.result = NFA_PIM_UNUSED; else { copy_pim(&thread->pim, pim); l->has_pim = TRUE; } copy_sub(&thread->subs.norm, &subs->norm); #ifdef FEAT_SYN_HL if (nfa_has_zsubexpr) copy_sub(&thread->subs.synt, &subs->synt); #endif #ifdef ENABLE_LOG report_state("Adding", &thread->subs.norm, state, l->id, pim); did_print = TRUE; #endif } #ifdef ENABLE_LOG if (!did_print) report_state("Processing", &subs->norm, state, l->id, pim); #endif switch (state->c) { case NFA_MATCH: break; case NFA_SPLIT: /* order matters here */ subs = addstate(l, state->out, subs, pim, off); subs = addstate(l, state->out1, subs, pim, off); break; case NFA_EMPTY: case NFA_NOPEN: case NFA_NCLOSE: subs = addstate(l, state->out, subs, pim, off); break; case NFA_MOPEN: case NFA_MOPEN1: case NFA_MOPEN2: case NFA_MOPEN3: case NFA_MOPEN4: case NFA_MOPEN5: case NFA_MOPEN6: case NFA_MOPEN7: case NFA_MOPEN8: case NFA_MOPEN9: #ifdef FEAT_SYN_HL case NFA_ZOPEN: case NFA_ZOPEN1: case NFA_ZOPEN2: case NFA_ZOPEN3: case NFA_ZOPEN4: case NFA_ZOPEN5: case NFA_ZOPEN6: case NFA_ZOPEN7: case NFA_ZOPEN8: case NFA_ZOPEN9: #endif case NFA_ZSTART: if (state->c == NFA_ZSTART) { subidx = 0; sub = &subs->norm; } #ifdef FEAT_SYN_HL else if (state->c >= NFA_ZOPEN && state->c <= NFA_ZOPEN9) { subidx = state->c - NFA_ZOPEN; sub = &subs->synt; } #endif else { subidx = state->c - NFA_MOPEN; sub = &subs->norm; } /* avoid compiler warnings */ save_ptr = NULL; save_lpos.lnum = 0; save_lpos.col = 0; /* Set the position (with "off" added) in the subexpression. Save * and restore it when it was in use. Otherwise fill any gap. */ if (REG_MULTI) { if (subidx < sub->in_use) { save_lpos.lnum = sub->list.multi[subidx].start_lnum; save_lpos.col = sub->list.multi[subidx].start_col; save_in_use = -1; } else { save_in_use = sub->in_use; for (i = sub->in_use; i < subidx; ++i) { sub->list.multi[i].start_lnum = -1; sub->list.multi[i].end_lnum = -1; } sub->in_use = subidx + 1; } if (off == -1) { sub->list.multi[subidx].start_lnum = reglnum + 1; sub->list.multi[subidx].start_col = 0; } else { sub->list.multi[subidx].start_lnum = reglnum; sub->list.multi[subidx].start_col = (colnr_T)(reginput - regline + off); } sub->list.multi[subidx].end_lnum = -1; } else { if (subidx < sub->in_use) { save_ptr = sub->list.line[subidx].start; save_in_use = -1; } else { save_in_use = sub->in_use; for (i = sub->in_use; i < subidx; ++i) { sub->list.line[i].start = NULL; sub->list.line[i].end = NULL; } sub->in_use = subidx + 1; } sub->list.line[subidx].start = reginput + off; } subs = addstate(l, state->out, subs, pim, off); /* "subs" may have changed, need to set "sub" again */ #ifdef FEAT_SYN_HL if (state->c >= NFA_ZOPEN && state->c <= NFA_ZOPEN9) sub = &subs->synt; else #endif sub = &subs->norm; if (save_in_use == -1) { if (REG_MULTI) { sub->list.multi[subidx].start_lnum = save_lpos.lnum; sub->list.multi[subidx].start_col = save_lpos.col; } else sub->list.line[subidx].start = save_ptr; } else sub->in_use = save_in_use; break; case NFA_MCLOSE: if (nfa_has_zend && (REG_MULTI ? subs->norm.list.multi[0].end_lnum >= 0 : subs->norm.list.line[0].end != NULL)) { /* Do not overwrite the position set by \ze. */ subs = addstate(l, state->out, subs, pim, off); break; } case NFA_MCLOSE1: case NFA_MCLOSE2: case NFA_MCLOSE3: case NFA_MCLOSE4: case NFA_MCLOSE5: case NFA_MCLOSE6: case NFA_MCLOSE7: case NFA_MCLOSE8: case NFA_MCLOSE9: #ifdef FEAT_SYN_HL case NFA_ZCLOSE: case NFA_ZCLOSE1: case NFA_ZCLOSE2: case NFA_ZCLOSE3: case NFA_ZCLOSE4: case NFA_ZCLOSE5: case NFA_ZCLOSE6: case NFA_ZCLOSE7: case NFA_ZCLOSE8: case NFA_ZCLOSE9: #endif case NFA_ZEND: if (state->c == NFA_ZEND) { subidx = 0; sub = &subs->norm; } #ifdef FEAT_SYN_HL else if (state->c >= NFA_ZCLOSE && state->c <= NFA_ZCLOSE9) { subidx = state->c - NFA_ZCLOSE; sub = &subs->synt; } #endif else { subidx = state->c - NFA_MCLOSE; sub = &subs->norm; } /* We don't fill in gaps here, there must have been an MOPEN that * has done that. */ save_in_use = sub->in_use; if (sub->in_use <= subidx) sub->in_use = subidx + 1; if (REG_MULTI) { save_lpos.lnum = sub->list.multi[subidx].end_lnum; save_lpos.col = sub->list.multi[subidx].end_col; if (off == -1) { sub->list.multi[subidx].end_lnum = reglnum + 1; sub->list.multi[subidx].end_col = 0; } else { sub->list.multi[subidx].end_lnum = reglnum; sub->list.multi[subidx].end_col = (colnr_T)(reginput - regline + off); } /* avoid compiler warnings */ save_ptr = NULL; } else { save_ptr = sub->list.line[subidx].end; sub->list.line[subidx].end = reginput + off; /* avoid compiler warnings */ save_lpos.lnum = 0; save_lpos.col = 0; } subs = addstate(l, state->out, subs, pim, off); /* "subs" may have changed, need to set "sub" again */ #ifdef FEAT_SYN_HL if (state->c >= NFA_ZCLOSE && state->c <= NFA_ZCLOSE9) sub = &subs->synt; else #endif sub = &subs->norm; if (REG_MULTI) { sub->list.multi[subidx].end_lnum = save_lpos.lnum; sub->list.multi[subidx].end_col = save_lpos.col; } else sub->list.line[subidx].end = save_ptr; sub->in_use = save_in_use; break; } return subs; } /* * Like addstate(), but the new state(s) are put at position "*ip". * Used for zero-width matches, next state to use is the added one. * This makes sure the order of states to be tried does not change, which * matters for alternatives. */ static void addstate_here( nfa_list_T *l, /* runtime state list */ nfa_state_T *state, /* state to update */ regsubs_T *subs, /* pointers to subexpressions */ nfa_pim_T *pim, /* postponed look-behind match */ int *ip) { int tlen = l->n; int count; int listidx = *ip; /* first add the state(s) at the end, so that we know how many there are */ addstate(l, state, subs, pim, 0); /* when "*ip" was at the end of the list, nothing to do */ if (listidx + 1 == tlen) return; /* re-order to put the new state at the current position */ count = l->n - tlen; if (count == 0) return; /* no state got added */ if (count == 1) { /* overwrite the current state */ l->t[listidx] = l->t[l->n - 1]; } else if (count > 1) { if (l->n + count - 1 >= l->len) { /* not enough space to move the new states, reallocate the list * and move the states to the right position */ nfa_thread_T *newl; l->len = l->len * 3 / 2 + 50; newl = (nfa_thread_T *)alloc(l->len * sizeof(nfa_thread_T)); if (newl == NULL) return; mch_memmove(&(newl[0]), &(l->t[0]), sizeof(nfa_thread_T) * listidx); mch_memmove(&(newl[listidx]), &(l->t[l->n - count]), sizeof(nfa_thread_T) * count); mch_memmove(&(newl[listidx + count]), &(l->t[listidx + 1]), sizeof(nfa_thread_T) * (l->n - count - listidx - 1)); vim_free(l->t); l->t = newl; } else { /* make space for new states, then move them from the * end to the current position */ mch_memmove(&(l->t[listidx + count]), &(l->t[listidx + 1]), sizeof(nfa_thread_T) * (l->n - listidx - 1)); mch_memmove(&(l->t[listidx]), &(l->t[l->n - 1]), sizeof(nfa_thread_T) * count); } } --l->n; *ip = listidx - 1; } /* * Check character class "class" against current character c. */ static int check_char_class(int class, int c) { switch (class) { case NFA_CLASS_ALNUM: if (c >= 1 && c <= 255 && isalnum(c)) return OK; break; case NFA_CLASS_ALPHA: if (c >= 1 && c <= 255 && isalpha(c)) return OK; break; case NFA_CLASS_BLANK: if (c == ' ' || c == '\t') return OK; break; case NFA_CLASS_CNTRL: if (c >= 1 && c <= 255 && iscntrl(c)) return OK; break; case NFA_CLASS_DIGIT: if (VIM_ISDIGIT(c)) return OK; break; case NFA_CLASS_GRAPH: if (c >= 1 && c <= 255 && isgraph(c)) return OK; break; case NFA_CLASS_LOWER: if (MB_ISLOWER(c)) return OK; break; case NFA_CLASS_PRINT: if (vim_isprintc(c)) return OK; break; case NFA_CLASS_PUNCT: if (c >= 1 && c <= 255 && ispunct(c)) return OK; break; case NFA_CLASS_SPACE: if ((c >= 9 && c <= 13) || (c == ' ')) return OK; break; case NFA_CLASS_UPPER: if (MB_ISUPPER(c)) return OK; break; case NFA_CLASS_XDIGIT: if (vim_isxdigit(c)) return OK; break; case NFA_CLASS_TAB: if (c == '\t') return OK; break; case NFA_CLASS_RETURN: if (c == '\r') return OK; break; case NFA_CLASS_BACKSPACE: if (c == '\b') return OK; break; case NFA_CLASS_ESCAPE: if (c == '\033') return OK; break; default: /* should not be here :P */ EMSGN(_(e_ill_char_class), class); return FAIL; } return FAIL; } /* * Check for a match with subexpression "subidx". * Return TRUE if it matches. */ static int match_backref( regsub_T *sub, /* pointers to subexpressions */ int subidx, int *bytelen) /* out: length of match in bytes */ { int len; if (sub->in_use <= subidx) { retempty: /* backref was not set, match an empty string */ *bytelen = 0; return TRUE; } if (REG_MULTI) { if (sub->list.multi[subidx].start_lnum < 0 || sub->list.multi[subidx].end_lnum < 0) goto retempty; if (sub->list.multi[subidx].start_lnum == reglnum && sub->list.multi[subidx].end_lnum == reglnum) { len = sub->list.multi[subidx].end_col - sub->list.multi[subidx].start_col; if (cstrncmp(regline + sub->list.multi[subidx].start_col, reginput, &len) == 0) { *bytelen = len; return TRUE; } } else { if (match_with_backref( sub->list.multi[subidx].start_lnum, sub->list.multi[subidx].start_col, sub->list.multi[subidx].end_lnum, sub->list.multi[subidx].end_col, bytelen) == RA_MATCH) return TRUE; } } else { if (sub->list.line[subidx].start == NULL || sub->list.line[subidx].end == NULL) goto retempty; len = (int)(sub->list.line[subidx].end - sub->list.line[subidx].start); if (cstrncmp(sub->list.line[subidx].start, reginput, &len) == 0) { *bytelen = len; return TRUE; } } return FALSE; } #ifdef FEAT_SYN_HL static int match_zref(int subidx, int *bytelen); /* * Check for a match with \z subexpression "subidx". * Return TRUE if it matches. */ static int match_zref( int subidx, int *bytelen) /* out: length of match in bytes */ { int len; cleanup_zsubexpr(); if (re_extmatch_in == NULL || re_extmatch_in->matches[subidx] == NULL) { /* backref was not set, match an empty string */ *bytelen = 0; return TRUE; } len = (int)STRLEN(re_extmatch_in->matches[subidx]); if (cstrncmp(re_extmatch_in->matches[subidx], reginput, &len) == 0) { *bytelen = len; return TRUE; } return FALSE; } #endif /* * Save list IDs for all NFA states of "prog" into "list". * Also reset the IDs to zero. * Only used for the recursive value lastlist[1]. */ static void nfa_save_listids(nfa_regprog_T *prog, int *list) { int i; nfa_state_T *p; /* Order in the list is reverse, it's a bit faster that way. */ p = &prog->state[0]; for (i = prog->nstate; --i >= 0; ) { list[i] = p->lastlist[1]; p->lastlist[1] = 0; ++p; } } /* * Restore list IDs from "list" to all NFA states. */ static void nfa_restore_listids(nfa_regprog_T *prog, int *list) { int i; nfa_state_T *p; p = &prog->state[0]; for (i = prog->nstate; --i >= 0; ) { p->lastlist[1] = list[i]; ++p; } } static int nfa_re_num_cmp(long_u val, int op, long_u pos) { if (op == 1) return pos > val; if (op == 2) return pos < val; return val == pos; } static int recursive_regmatch(nfa_state_T *state, nfa_pim_T *pim, nfa_regprog_T *prog, regsubs_T *submatch, regsubs_T *m, int **listids); static int nfa_regmatch(nfa_regprog_T *prog, nfa_state_T *start, regsubs_T *submatch, regsubs_T *m); /* * Recursively call nfa_regmatch() * "pim" is NULL or contains info about a Postponed Invisible Match (start * position). */ static int recursive_regmatch( nfa_state_T *state, nfa_pim_T *pim, nfa_regprog_T *prog, regsubs_T *submatch, regsubs_T *m, int **listids) { int save_reginput_col = (int)(reginput - regline); int save_reglnum = reglnum; int save_nfa_match = nfa_match; int save_nfa_listid = nfa_listid; save_se_T *save_nfa_endp = nfa_endp; save_se_T endpos; save_se_T *endposp = NULL; int result; int need_restore = FALSE; if (pim != NULL) { /* start at the position where the postponed match was */ if (REG_MULTI) reginput = regline + pim->end.pos.col; else reginput = pim->end.ptr; } if (state->c == NFA_START_INVISIBLE_BEFORE || state->c == NFA_START_INVISIBLE_BEFORE_FIRST || state->c == NFA_START_INVISIBLE_BEFORE_NEG || state->c == NFA_START_INVISIBLE_BEFORE_NEG_FIRST) { /* The recursive match must end at the current position. When "pim" is * not NULL it specifies the current position. */ endposp = &endpos; if (REG_MULTI) { if (pim == NULL) { endpos.se_u.pos.col = (int)(reginput - regline); endpos.se_u.pos.lnum = reglnum; } else endpos.se_u.pos = pim->end.pos; } else { if (pim == NULL) endpos.se_u.ptr = reginput; else endpos.se_u.ptr = pim->end.ptr; } /* Go back the specified number of bytes, or as far as the * start of the previous line, to try matching "\@<=" or * not matching "\@<!". This is very inefficient, limit the number of * bytes if possible. */ if (state->val <= 0) { if (REG_MULTI) { regline = reg_getline(--reglnum); if (regline == NULL) /* can't go before the first line */ regline = reg_getline(++reglnum); } reginput = regline; } else { if (REG_MULTI && (int)(reginput - regline) < state->val) { /* Not enough bytes in this line, go to end of * previous line. */ regline = reg_getline(--reglnum); if (regline == NULL) { /* can't go before the first line */ regline = reg_getline(++reglnum); reginput = regline; } else reginput = regline + STRLEN(regline); } if ((int)(reginput - regline) >= state->val) { reginput -= state->val; #ifdef FEAT_MBYTE if (has_mbyte) reginput -= mb_head_off(regline, reginput); #endif } else reginput = regline; } } #ifdef ENABLE_LOG if (log_fd != stderr) fclose(log_fd); log_fd = NULL; #endif /* Have to clear the lastlist field of the NFA nodes, so that * nfa_regmatch() and addstate() can run properly after recursion. */ if (nfa_ll_index == 1) { /* Already calling nfa_regmatch() recursively. Save the lastlist[1] * values and clear them. */ if (*listids == NULL) { *listids = (int *)lalloc(sizeof(int) * nstate, TRUE); if (*listids == NULL) { EMSG(_("E878: (NFA) Could not allocate memory for branch traversal!")); return 0; } } nfa_save_listids(prog, *listids); need_restore = TRUE; /* any value of nfa_listid will do */ } else { /* First recursive nfa_regmatch() call, switch to the second lastlist * entry. Make sure nfa_listid is different from a previous recursive * call, because some states may still have this ID. */ ++nfa_ll_index; if (nfa_listid <= nfa_alt_listid) nfa_listid = nfa_alt_listid; } /* Call nfa_regmatch() to check if the current concat matches at this * position. The concat ends with the node NFA_END_INVISIBLE */ nfa_endp = endposp; result = nfa_regmatch(prog, state->out, submatch, m); if (need_restore) nfa_restore_listids(prog, *listids); else { --nfa_ll_index; nfa_alt_listid = nfa_listid; } /* restore position in input text */ reglnum = save_reglnum; if (REG_MULTI) regline = reg_getline(reglnum); reginput = regline + save_reginput_col; nfa_match = save_nfa_match; nfa_endp = save_nfa_endp; nfa_listid = save_nfa_listid; #ifdef ENABLE_LOG log_fd = fopen(NFA_REGEXP_RUN_LOG, "a"); if (log_fd != NULL) { fprintf(log_fd, "****************************\n"); fprintf(log_fd, "FINISHED RUNNING nfa_regmatch() recursively\n"); fprintf(log_fd, "MATCH = %s\n", result == TRUE ? "OK" : "FALSE"); fprintf(log_fd, "****************************\n"); } else { EMSG(_("Could not open temporary log file for writing, displaying on stderr ... ")); log_fd = stderr; } #endif return result; } static int skip_to_start(int c, colnr_T *colp); static long find_match_text(colnr_T startcol, int regstart, char_u *match_text); /* * Estimate the chance of a match with "state" failing. * empty match: 0 * NFA_ANY: 1 * specific character: 99 */ static int failure_chance(nfa_state_T *state, int depth) { int c = state->c; int l, r; /* detect looping */ if (depth > 4) return 1; switch (c) { case NFA_SPLIT: if (state->out->c == NFA_SPLIT || state->out1->c == NFA_SPLIT) /* avoid recursive stuff */ return 1; /* two alternatives, use the lowest failure chance */ l = failure_chance(state->out, depth + 1); r = failure_chance(state->out1, depth + 1); return l < r ? l : r; case NFA_ANY: /* matches anything, unlikely to fail */ return 1; case NFA_MATCH: case NFA_MCLOSE: case NFA_ANY_COMPOSING: /* empty match works always */ return 0; case NFA_START_INVISIBLE: case NFA_START_INVISIBLE_FIRST: case NFA_START_INVISIBLE_NEG: case NFA_START_INVISIBLE_NEG_FIRST: case NFA_START_INVISIBLE_BEFORE: case NFA_START_INVISIBLE_BEFORE_FIRST: case NFA_START_INVISIBLE_BEFORE_NEG: case NFA_START_INVISIBLE_BEFORE_NEG_FIRST: case NFA_START_PATTERN: /* recursive regmatch is expensive, use low failure chance */ return 5; case NFA_BOL: case NFA_EOL: case NFA_BOF: case NFA_EOF: case NFA_NEWL: return 99; case NFA_BOW: case NFA_EOW: return 90; case NFA_MOPEN: case NFA_MOPEN1: case NFA_MOPEN2: case NFA_MOPEN3: case NFA_MOPEN4: case NFA_MOPEN5: case NFA_MOPEN6: case NFA_MOPEN7: case NFA_MOPEN8: case NFA_MOPEN9: #ifdef FEAT_SYN_HL case NFA_ZOPEN: case NFA_ZOPEN1: case NFA_ZOPEN2: case NFA_ZOPEN3: case NFA_ZOPEN4: case NFA_ZOPEN5: case NFA_ZOPEN6: case NFA_ZOPEN7: case NFA_ZOPEN8: case NFA_ZOPEN9: case NFA_ZCLOSE: case NFA_ZCLOSE1: case NFA_ZCLOSE2: case NFA_ZCLOSE3: case NFA_ZCLOSE4: case NFA_ZCLOSE5: case NFA_ZCLOSE6: case NFA_ZCLOSE7: case NFA_ZCLOSE8: case NFA_ZCLOSE9: #endif case NFA_NOPEN: case NFA_MCLOSE1: case NFA_MCLOSE2: case NFA_MCLOSE3: case NFA_MCLOSE4: case NFA_MCLOSE5: case NFA_MCLOSE6: case NFA_MCLOSE7: case NFA_MCLOSE8: case NFA_MCLOSE9: case NFA_NCLOSE: return failure_chance(state->out, depth + 1); case NFA_BACKREF1: case NFA_BACKREF2: case NFA_BACKREF3: case NFA_BACKREF4: case NFA_BACKREF5: case NFA_BACKREF6: case NFA_BACKREF7: case NFA_BACKREF8: case NFA_BACKREF9: #ifdef FEAT_SYN_HL case NFA_ZREF1: case NFA_ZREF2: case NFA_ZREF3: case NFA_ZREF4: case NFA_ZREF5: case NFA_ZREF6: case NFA_ZREF7: case NFA_ZREF8: case NFA_ZREF9: #endif /* backreferences don't match in many places */ return 94; case NFA_LNUM_GT: case NFA_LNUM_LT: case NFA_COL_GT: case NFA_COL_LT: case NFA_VCOL_GT: case NFA_VCOL_LT: case NFA_MARK_GT: case NFA_MARK_LT: case NFA_VISUAL: /* before/after positions don't match very often */ return 85; case NFA_LNUM: return 90; case NFA_CURSOR: case NFA_COL: case NFA_VCOL: case NFA_MARK: /* specific positions rarely match */ return 98; case NFA_COMPOSING: return 95; default: if (c > 0) /* character match fails often */ return 95; } /* something else, includes character classes */ return 50; } /* * Skip until the char "c" we know a match must start with. */ static int skip_to_start(int c, colnr_T *colp) { char_u *s; /* Used often, do some work to avoid call overhead. */ if (!ireg_ic #ifdef FEAT_MBYTE && !has_mbyte #endif ) s = vim_strbyte(regline + *colp, c); else s = cstrchr(regline + *colp, c); if (s == NULL) return FAIL; *colp = (int)(s - regline); return OK; } /* * Check for a match with match_text. * Called after skip_to_start() has found regstart. * Returns zero for no match, 1 for a match. */ static long find_match_text(colnr_T startcol, int regstart, char_u *match_text) { colnr_T col = startcol; int c1, c2; int len1, len2; int match; for (;;) { match = TRUE; len2 = MB_CHAR2LEN(regstart); /* skip regstart */ for (len1 = 0; match_text[len1] != NUL; len1 += MB_CHAR2LEN(c1)) { c1 = PTR2CHAR(match_text + len1); c2 = PTR2CHAR(regline + col + len2); if (c1 != c2 && (!ireg_ic || MB_TOLOWER(c1) != MB_TOLOWER(c2))) { match = FALSE; break; } len2 += MB_CHAR2LEN(c2); } if (match #ifdef FEAT_MBYTE /* check that no composing char follows */ && !(enc_utf8 && utf_iscomposing(PTR2CHAR(regline + col + len2))) #endif ) { cleanup_subexpr(); if (REG_MULTI) { reg_startpos[0].lnum = reglnum; reg_startpos[0].col = col; reg_endpos[0].lnum = reglnum; reg_endpos[0].col = col + len2; } else { reg_startp[0] = regline + col; reg_endp[0] = regline + col + len2; } return 1L; } /* Try finding regstart after the current match. */ col += MB_CHAR2LEN(regstart); /* skip regstart */ if (skip_to_start(regstart, &col) == FAIL) break; } return 0L; } /* * Main matching routine. * * Run NFA to determine whether it matches reginput. * * When "nfa_endp" is not NULL it is a required end-of-match position. * * Return TRUE if there is a match, FALSE otherwise. * When there is a match "submatch" contains the positions. * Note: Caller must ensure that: start != NULL. */ static int nfa_regmatch( nfa_regprog_T *prog, nfa_state_T *start, regsubs_T *submatch, regsubs_T *m) { int result; size_t size = 0; int flag = 0; int go_to_nextline = FALSE; nfa_thread_T *t; nfa_list_T list[2]; int listidx; nfa_list_T *thislist; nfa_list_T *nextlist; int *listids = NULL; nfa_state_T *add_state; int add_here; int add_count; int add_off = 0; int toplevel = start->c == NFA_MOPEN; #ifdef NFA_REGEXP_DEBUG_LOG FILE *debug = fopen(NFA_REGEXP_DEBUG_LOG, "a"); if (debug == NULL) { EMSG2(_("(NFA) COULD NOT OPEN %s !"), NFA_REGEXP_DEBUG_LOG); return FALSE; } #endif /* Some patterns may take a long time to match, especially when using * recursive_regmatch(). Allow interrupting them with CTRL-C. */ fast_breakcheck(); if (got_int) return FALSE; #ifdef FEAT_RELTIME if (nfa_time_limit != NULL && profile_passed_limit(nfa_time_limit)) return FALSE; #endif nfa_match = FALSE; /* Allocate memory for the lists of nodes. */ size = (nstate + 1) * sizeof(nfa_thread_T); list[0].t = (nfa_thread_T *)lalloc(size, TRUE); list[0].len = nstate + 1; list[1].t = (nfa_thread_T *)lalloc(size, TRUE); list[1].len = nstate + 1; if (list[0].t == NULL || list[1].t == NULL) goto theend; #ifdef ENABLE_LOG log_fd = fopen(NFA_REGEXP_RUN_LOG, "a"); if (log_fd != NULL) { fprintf(log_fd, "**********************************\n"); nfa_set_code(start->c); fprintf(log_fd, " RUNNING nfa_regmatch() starting with state %d, code %s\n", abs(start->id), code); fprintf(log_fd, "**********************************\n"); } else { EMSG(_("Could not open temporary log file for writing, displaying on stderr ... ")); log_fd = stderr; } #endif thislist = &list[0]; thislist->n = 0; thislist->has_pim = FALSE; nextlist = &list[1]; nextlist->n = 0; nextlist->has_pim = FALSE; #ifdef ENABLE_LOG fprintf(log_fd, "(---) STARTSTATE first\n"); #endif thislist->id = nfa_listid + 1; /* Inline optimized code for addstate(thislist, start, m, 0) if we know * it's the first MOPEN. */ if (toplevel) { if (REG_MULTI) { m->norm.list.multi[0].start_lnum = reglnum; m->norm.list.multi[0].start_col = (colnr_T)(reginput - regline); } else m->norm.list.line[0].start = reginput; m->norm.in_use = 1; addstate(thislist, start->out, m, NULL, 0); } else addstate(thislist, start, m, NULL, 0); #define ADD_STATE_IF_MATCH(state) \ if (result) { \ add_state = state->out; \ add_off = clen; \ } /* * Run for each character. */ for (;;) { int curc; int clen; #ifdef FEAT_MBYTE if (has_mbyte) { curc = (*mb_ptr2char)(reginput); clen = (*mb_ptr2len)(reginput); } else #endif { curc = *reginput; clen = 1; } if (curc == NUL) { clen = 0; go_to_nextline = FALSE; } /* swap lists */ thislist = &list[flag]; nextlist = &list[flag ^= 1]; nextlist->n = 0; /* clear nextlist */ nextlist->has_pim = FALSE; ++nfa_listid; if (prog->re_engine == AUTOMATIC_ENGINE && nfa_listid >= NFA_MAX_STATES) { /* too many states, retry with old engine */ nfa_match = NFA_TOO_EXPENSIVE; goto theend; } thislist->id = nfa_listid; nextlist->id = nfa_listid + 1; #ifdef ENABLE_LOG fprintf(log_fd, "------------------------------------------\n"); fprintf(log_fd, ">>> Reginput is \"%s\"\n", reginput); fprintf(log_fd, ">>> Advanced one character ... Current char is %c (code %d) \n", curc, (int)curc); fprintf(log_fd, ">>> Thislist has %d states available: ", thislist->n); { int i; for (i = 0; i < thislist->n; i++) fprintf(log_fd, "%d ", abs(thislist->t[i].state->id)); } fprintf(log_fd, "\n"); #endif #ifdef NFA_REGEXP_DEBUG_LOG fprintf(debug, "\n-------------------\n"); #endif /* * If the state lists are empty we can stop. */ if (thislist->n == 0) break; /* compute nextlist */ for (listidx = 0; listidx < thislist->n; ++listidx) { t = &thislist->t[listidx]; #ifdef NFA_REGEXP_DEBUG_LOG nfa_set_code(t->state->c); fprintf(debug, "%s, ", code); #endif #ifdef ENABLE_LOG { int col; if (t->subs.norm.in_use <= 0) col = -1; else if (REG_MULTI) col = t->subs.norm.list.multi[0].start_col; else col = (int)(t->subs.norm.list.line[0].start - regline); nfa_set_code(t->state->c); fprintf(log_fd, "(%d) char %d %s (start col %d)%s ... \n", abs(t->state->id), (int)t->state->c, code, col, pim_info(&t->pim)); } #endif /* * Handle the possible codes of the current state. * The most important is NFA_MATCH. */ add_state = NULL; add_here = FALSE; add_count = 0; switch (t->state->c) { case NFA_MATCH: { #ifdef FEAT_MBYTE /* If the match ends before a composing characters and * ireg_icombine is not set, that is not really a match. */ if (enc_utf8 && !ireg_icombine && utf_iscomposing(curc)) break; #endif nfa_match = TRUE; copy_sub(&submatch->norm, &t->subs.norm); #ifdef FEAT_SYN_HL if (nfa_has_zsubexpr) copy_sub(&submatch->synt, &t->subs.synt); #endif #ifdef ENABLE_LOG log_subsexpr(&t->subs); #endif /* Found the left-most longest match, do not look at any other * states at this position. When the list of states is going * to be empty quit without advancing, so that "reginput" is * correct. */ if (nextlist->n == 0) clen = 0; goto nextchar; } case NFA_END_INVISIBLE: case NFA_END_INVISIBLE_NEG: case NFA_END_PATTERN: /* * This is only encountered after a NFA_START_INVISIBLE or * NFA_START_INVISIBLE_BEFORE node. * They surround a zero-width group, used with "\@=", "\&", * "\@!", "\@<=" and "\@<!". * If we got here, it means that the current "invisible" group * finished successfully, so return control to the parent * nfa_regmatch(). For a look-behind match only when it ends * in the position in "nfa_endp". * Submatches are stored in *m, and used in the parent call. */ #ifdef ENABLE_LOG if (nfa_endp != NULL) { if (REG_MULTI) fprintf(log_fd, "Current lnum: %d, endp lnum: %d; current col: %d, endp col: %d\n", (int)reglnum, (int)nfa_endp->se_u.pos.lnum, (int)(reginput - regline), nfa_endp->se_u.pos.col); else fprintf(log_fd, "Current col: %d, endp col: %d\n", (int)(reginput - regline), (int)(nfa_endp->se_u.ptr - reginput)); } #endif /* If "nfa_endp" is set it's only a match if it ends at * "nfa_endp" */ if (nfa_endp != NULL && (REG_MULTI ? (reglnum != nfa_endp->se_u.pos.lnum || (int)(reginput - regline) != nfa_endp->se_u.pos.col) : reginput != nfa_endp->se_u.ptr)) break; /* do not set submatches for \@! */ if (t->state->c != NFA_END_INVISIBLE_NEG) { copy_sub(&m->norm, &t->subs.norm); #ifdef FEAT_SYN_HL if (nfa_has_zsubexpr) copy_sub(&m->synt, &t->subs.synt); #endif } #ifdef ENABLE_LOG fprintf(log_fd, "Match found:\n"); log_subsexpr(m); #endif nfa_match = TRUE; /* See comment above at "goto nextchar". */ if (nextlist->n == 0) clen = 0; goto nextchar; case NFA_START_INVISIBLE: case NFA_START_INVISIBLE_FIRST: case NFA_START_INVISIBLE_NEG: case NFA_START_INVISIBLE_NEG_FIRST: case NFA_START_INVISIBLE_BEFORE: case NFA_START_INVISIBLE_BEFORE_FIRST: case NFA_START_INVISIBLE_BEFORE_NEG: case NFA_START_INVISIBLE_BEFORE_NEG_FIRST: { #ifdef ENABLE_LOG fprintf(log_fd, "Failure chance invisible: %d, what follows: %d\n", failure_chance(t->state->out, 0), failure_chance(t->state->out1->out, 0)); #endif /* Do it directly if there already is a PIM or when * nfa_postprocess() detected it will work better. */ if (t->pim.result != NFA_PIM_UNUSED || t->state->c == NFA_START_INVISIBLE_FIRST || t->state->c == NFA_START_INVISIBLE_NEG_FIRST || t->state->c == NFA_START_INVISIBLE_BEFORE_FIRST || t->state->c == NFA_START_INVISIBLE_BEFORE_NEG_FIRST) { int in_use = m->norm.in_use; /* Copy submatch info for the recursive call, opposite * of what happens on success below. */ copy_sub_off(&m->norm, &t->subs.norm); #ifdef FEAT_SYN_HL if (nfa_has_zsubexpr) copy_sub_off(&m->synt, &t->subs.synt); #endif /* * First try matching the invisible match, then what * follows. */ result = recursive_regmatch(t->state, NULL, prog, submatch, m, &listids); if (result == NFA_TOO_EXPENSIVE) { nfa_match = result; goto theend; } /* for \@! and \@<! it is a match when the result is * FALSE */ if (result != (t->state->c == NFA_START_INVISIBLE_NEG || t->state->c == NFA_START_INVISIBLE_NEG_FIRST || t->state->c == NFA_START_INVISIBLE_BEFORE_NEG || t->state->c == NFA_START_INVISIBLE_BEFORE_NEG_FIRST)) { /* Copy submatch info from the recursive call */ copy_sub_off(&t->subs.norm, &m->norm); #ifdef FEAT_SYN_HL if (nfa_has_zsubexpr) copy_sub_off(&t->subs.synt, &m->synt); #endif /* If the pattern has \ze and it matched in the * sub pattern, use it. */ copy_ze_off(&t->subs.norm, &m->norm); /* t->state->out1 is the corresponding * END_INVISIBLE node; Add its out to the current * list (zero-width match). */ add_here = TRUE; add_state = t->state->out1->out; } m->norm.in_use = in_use; } else { nfa_pim_T pim; /* * First try matching what follows. Only if a match * is found verify the invisible match matches. Add a * nfa_pim_T to the following states, it contains info * about the invisible match. */ pim.state = t->state; pim.result = NFA_PIM_TODO; pim.subs.norm.in_use = 0; #ifdef FEAT_SYN_HL pim.subs.synt.in_use = 0; #endif if (REG_MULTI) { pim.end.pos.col = (int)(reginput - regline); pim.end.pos.lnum = reglnum; } else pim.end.ptr = reginput; /* t->state->out1 is the corresponding END_INVISIBLE * node; Add its out to the current list (zero-width * match). */ addstate_here(thislist, t->state->out1->out, &t->subs, &pim, &listidx); } } break; case NFA_START_PATTERN: { nfa_state_T *skip = NULL; #ifdef ENABLE_LOG int skip_lid = 0; #endif /* There is no point in trying to match the pattern if the * output state is not going to be added to the list. */ if (state_in_list(nextlist, t->state->out1->out, &t->subs)) { skip = t->state->out1->out; #ifdef ENABLE_LOG skip_lid = nextlist->id; #endif } else if (state_in_list(nextlist, t->state->out1->out->out, &t->subs)) { skip = t->state->out1->out->out; #ifdef ENABLE_LOG skip_lid = nextlist->id; #endif } else if (state_in_list(thislist, t->state->out1->out->out, &t->subs)) { skip = t->state->out1->out->out; #ifdef ENABLE_LOG skip_lid = thislist->id; #endif } if (skip != NULL) { #ifdef ENABLE_LOG nfa_set_code(skip->c); fprintf(log_fd, "> Not trying to match pattern, output state %d is already in list %d. char %d: %s\n", abs(skip->id), skip_lid, skip->c, code); #endif break; } /* Copy submatch info to the recursive call, opposite of what * happens afterwards. */ copy_sub_off(&m->norm, &t->subs.norm); #ifdef FEAT_SYN_HL if (nfa_has_zsubexpr) copy_sub_off(&m->synt, &t->subs.synt); #endif /* First try matching the pattern. */ result = recursive_regmatch(t->state, NULL, prog, submatch, m, &listids); if (result == NFA_TOO_EXPENSIVE) { nfa_match = result; goto theend; } if (result) { int bytelen; #ifdef ENABLE_LOG fprintf(log_fd, "NFA_START_PATTERN matches:\n"); log_subsexpr(m); #endif /* Copy submatch info from the recursive call */ copy_sub_off(&t->subs.norm, &m->norm); #ifdef FEAT_SYN_HL if (nfa_has_zsubexpr) copy_sub_off(&t->subs.synt, &m->synt); #endif /* Now we need to skip over the matched text and then * continue with what follows. */ if (REG_MULTI) /* TODO: multi-line match */ bytelen = m->norm.list.multi[0].end_col - (int)(reginput - regline); else bytelen = (int)(m->norm.list.line[0].end - reginput); #ifdef ENABLE_LOG fprintf(log_fd, "NFA_START_PATTERN length: %d\n", bytelen); #endif if (bytelen == 0) { /* empty match, output of corresponding * NFA_END_PATTERN/NFA_SKIP to be used at current * position */ add_here = TRUE; add_state = t->state->out1->out->out; } else if (bytelen <= clen) { /* match current character, output of corresponding * NFA_END_PATTERN to be used at next position. */ add_state = t->state->out1->out->out; add_off = clen; } else { /* skip over the matched characters, set character * count in NFA_SKIP */ add_state = t->state->out1->out; add_off = bytelen; add_count = bytelen - clen; } } break; } case NFA_BOL: if (reginput == regline) { add_here = TRUE; add_state = t->state->out; } break; case NFA_EOL: if (curc == NUL) { add_here = TRUE; add_state = t->state->out; } break; case NFA_BOW: result = TRUE; if (curc == NUL) result = FALSE; #ifdef FEAT_MBYTE else if (has_mbyte) { int this_class; /* Get class of current and previous char (if it exists). */ this_class = mb_get_class_buf(reginput, reg_buf); if (this_class <= 1) result = FALSE; else if (reg_prev_class() == this_class) result = FALSE; } #endif else if (!vim_iswordc_buf(curc, reg_buf) || (reginput > regline && vim_iswordc_buf(reginput[-1], reg_buf))) result = FALSE; if (result) { add_here = TRUE; add_state = t->state->out; } break; case NFA_EOW: result = TRUE; if (reginput == regline) result = FALSE; #ifdef FEAT_MBYTE else if (has_mbyte) { int this_class, prev_class; /* Get class of current and previous char (if it exists). */ this_class = mb_get_class_buf(reginput, reg_buf); prev_class = reg_prev_class(); if (this_class == prev_class || prev_class == 0 || prev_class == 1) result = FALSE; } #endif else if (!vim_iswordc_buf(reginput[-1], reg_buf) || (reginput[0] != NUL && vim_iswordc_buf(curc, reg_buf))) result = FALSE; if (result) { add_here = TRUE; add_state = t->state->out; } break; case NFA_BOF: if (reglnum == 0 && reginput == regline && (!REG_MULTI || reg_firstlnum == 1)) { add_here = TRUE; add_state = t->state->out; } break; case NFA_EOF: if (reglnum == reg_maxline && curc == NUL) { add_here = TRUE; add_state = t->state->out; } break; #ifdef FEAT_MBYTE case NFA_COMPOSING: { int mc = curc; int len = 0; nfa_state_T *end; nfa_state_T *sta; int cchars[MAX_MCO]; int ccount = 0; int j; sta = t->state->out; len = 0; if (utf_iscomposing(sta->c)) { /* Only match composing character(s), ignore base * character. Used for ".{composing}" and "{composing}" * (no preceding character). */ len += mb_char2len(mc); } if (ireg_icombine && len == 0) { /* If \Z was present, then ignore composing characters. * When ignoring the base character this always matches. */ if (len == 0 && sta->c != curc) result = FAIL; else result = OK; while (sta->c != NFA_END_COMPOSING) sta = sta->out; } /* Check base character matches first, unless ignored. */ else if (len > 0 || mc == sta->c) { if (len == 0) { len += mb_char2len(mc); sta = sta->out; } /* We don't care about the order of composing characters. * Get them into cchars[] first. */ while (len < clen) { mc = mb_ptr2char(reginput + len); cchars[ccount++] = mc; len += mb_char2len(mc); if (ccount == MAX_MCO) break; } /* Check that each composing char in the pattern matches a * composing char in the text. We do not check if all * composing chars are matched. */ result = OK; while (sta->c != NFA_END_COMPOSING) { for (j = 0; j < ccount; ++j) if (cchars[j] == sta->c) break; if (j == ccount) { result = FAIL; break; } sta = sta->out; } } else result = FAIL; end = t->state->out1; /* NFA_END_COMPOSING */ ADD_STATE_IF_MATCH(end); break; } #endif case NFA_NEWL: if (curc == NUL && !reg_line_lbr && REG_MULTI && reglnum <= reg_maxline) { go_to_nextline = TRUE; /* Pass -1 for the offset, which means taking the position * at the start of the next line. */ add_state = t->state->out; add_off = -1; } else if (curc == '\n' && reg_line_lbr) { /* match \n as if it is an ordinary character */ add_state = t->state->out; add_off = 1; } break; case NFA_START_COLL: case NFA_START_NEG_COLL: { /* What follows is a list of characters, until NFA_END_COLL. * One of them must match or none of them must match. */ nfa_state_T *state; int result_if_matched; int c1, c2; /* Never match EOL. If it's part of the collection it is added * as a separate state with an OR. */ if (curc == NUL) break; state = t->state->out; result_if_matched = (t->state->c == NFA_START_COLL); for (;;) { if (state->c == NFA_END_COLL) { result = !result_if_matched; break; } if (state->c == NFA_RANGE_MIN) { c1 = state->val; state = state->out; /* advance to NFA_RANGE_MAX */ c2 = state->val; #ifdef ENABLE_LOG fprintf(log_fd, "NFA_RANGE_MIN curc=%d c1=%d c2=%d\n", curc, c1, c2); #endif if (curc >= c1 && curc <= c2) { result = result_if_matched; break; } if (ireg_ic) { int curc_low = MB_TOLOWER(curc); int done = FALSE; for ( ; c1 <= c2; ++c1) if (MB_TOLOWER(c1) == curc_low) { result = result_if_matched; done = TRUE; break; } if (done) break; } } else if (state->c < 0 ? check_char_class(state->c, curc) : (curc == state->c || (ireg_ic && MB_TOLOWER(curc) == MB_TOLOWER(state->c)))) { result = result_if_matched; break; } state = state->out; } if (result) { /* next state is in out of the NFA_END_COLL, out1 of * START points to the END state */ add_state = t->state->out1->out; add_off = clen; } break; } case NFA_ANY: /* Any char except '\0', (end of input) does not match. */ if (curc > 0) { add_state = t->state->out; add_off = clen; } break; case NFA_ANY_COMPOSING: /* On a composing character skip over it. Otherwise do * nothing. Always matches. */ #ifdef FEAT_MBYTE if (enc_utf8 && utf_iscomposing(curc)) { add_off = clen; } else #endif { add_here = TRUE; add_off = 0; } add_state = t->state->out; break; /* * Character classes like \a for alpha, \d for digit etc. */ case NFA_IDENT: /* \i */ result = vim_isIDc(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_SIDENT: /* \I */ result = !VIM_ISDIGIT(curc) && vim_isIDc(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_KWORD: /* \k */ result = vim_iswordp_buf(reginput, reg_buf); ADD_STATE_IF_MATCH(t->state); break; case NFA_SKWORD: /* \K */ result = !VIM_ISDIGIT(curc) && vim_iswordp_buf(reginput, reg_buf); ADD_STATE_IF_MATCH(t->state); break; case NFA_FNAME: /* \f */ result = vim_isfilec(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_SFNAME: /* \F */ result = !VIM_ISDIGIT(curc) && vim_isfilec(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_PRINT: /* \p */ result = vim_isprintc(PTR2CHAR(reginput)); ADD_STATE_IF_MATCH(t->state); break; case NFA_SPRINT: /* \P */ result = !VIM_ISDIGIT(curc) && vim_isprintc(PTR2CHAR(reginput)); ADD_STATE_IF_MATCH(t->state); break; case NFA_WHITE: /* \s */ result = vim_iswhite(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_NWHITE: /* \S */ result = curc != NUL && !vim_iswhite(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_DIGIT: /* \d */ result = ri_digit(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_NDIGIT: /* \D */ result = curc != NUL && !ri_digit(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_HEX: /* \x */ result = ri_hex(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_NHEX: /* \X */ result = curc != NUL && !ri_hex(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_OCTAL: /* \o */ result = ri_octal(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_NOCTAL: /* \O */ result = curc != NUL && !ri_octal(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_WORD: /* \w */ result = ri_word(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_NWORD: /* \W */ result = curc != NUL && !ri_word(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_HEAD: /* \h */ result = ri_head(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_NHEAD: /* \H */ result = curc != NUL && !ri_head(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_ALPHA: /* \a */ result = ri_alpha(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_NALPHA: /* \A */ result = curc != NUL && !ri_alpha(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_LOWER: /* \l */ result = ri_lower(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_NLOWER: /* \L */ result = curc != NUL && !ri_lower(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_UPPER: /* \u */ result = ri_upper(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_NUPPER: /* \U */ result = curc != NUL && !ri_upper(curc); ADD_STATE_IF_MATCH(t->state); break; case NFA_LOWER_IC: /* [a-z] */ result = ri_lower(curc) || (ireg_ic && ri_upper(curc)); ADD_STATE_IF_MATCH(t->state); break; case NFA_NLOWER_IC: /* [^a-z] */ result = curc != NUL && !(ri_lower(curc) || (ireg_ic && ri_upper(curc))); ADD_STATE_IF_MATCH(t->state); break; case NFA_UPPER_IC: /* [A-Z] */ result = ri_upper(curc) || (ireg_ic && ri_lower(curc)); ADD_STATE_IF_MATCH(t->state); break; case NFA_NUPPER_IC: /* ^[A-Z] */ result = curc != NUL && !(ri_upper(curc) || (ireg_ic && ri_lower(curc))); ADD_STATE_IF_MATCH(t->state); break; case NFA_BACKREF1: case NFA_BACKREF2: case NFA_BACKREF3: case NFA_BACKREF4: case NFA_BACKREF5: case NFA_BACKREF6: case NFA_BACKREF7: case NFA_BACKREF8: case NFA_BACKREF9: #ifdef FEAT_SYN_HL case NFA_ZREF1: case NFA_ZREF2: case NFA_ZREF3: case NFA_ZREF4: case NFA_ZREF5: case NFA_ZREF6: case NFA_ZREF7: case NFA_ZREF8: case NFA_ZREF9: #endif /* \1 .. \9 \z1 .. \z9 */ { int subidx; int bytelen; if (t->state->c <= NFA_BACKREF9) { subidx = t->state->c - NFA_BACKREF1 + 1; result = match_backref(&t->subs.norm, subidx, &bytelen); } #ifdef FEAT_SYN_HL else { subidx = t->state->c - NFA_ZREF1 + 1; result = match_zref(subidx, &bytelen); } #endif if (result) { if (bytelen == 0) { /* empty match always works, output of NFA_SKIP to be * used next */ add_here = TRUE; add_state = t->state->out->out; } else if (bytelen <= clen) { /* match current character, jump ahead to out of * NFA_SKIP */ add_state = t->state->out->out; add_off = clen; } else { /* skip over the matched characters, set character * count in NFA_SKIP */ add_state = t->state->out; add_off = bytelen; add_count = bytelen - clen; } } break; } case NFA_SKIP: /* character of previous matching \1 .. \9 or \@> */ if (t->count - clen <= 0) { /* end of match, go to what follows */ add_state = t->state->out; add_off = clen; } else { /* add state again with decremented count */ add_state = t->state; add_off = 0; add_count = t->count - clen; } break; case NFA_LNUM: case NFA_LNUM_GT: case NFA_LNUM_LT: result = (REG_MULTI && nfa_re_num_cmp(t->state->val, t->state->c - NFA_LNUM, (long_u)(reglnum + reg_firstlnum))); if (result) { add_here = TRUE; add_state = t->state->out; } break; case NFA_COL: case NFA_COL_GT: case NFA_COL_LT: result = nfa_re_num_cmp(t->state->val, t->state->c - NFA_COL, (long_u)(reginput - regline) + 1); if (result) { add_here = TRUE; add_state = t->state->out; } break; case NFA_VCOL: case NFA_VCOL_GT: case NFA_VCOL_LT: { int op = t->state->c - NFA_VCOL; colnr_T col = (colnr_T)(reginput - regline); win_T *wp = reg_win == NULL ? curwin : reg_win; /* Bail out quickly when there can't be a match, avoid the * overhead of win_linetabsize() on long lines. */ if (op != 1 && col > t->state->val #ifdef FEAT_MBYTE * (has_mbyte ? MB_MAXBYTES : 1) #endif ) break; result = FALSE; if (op == 1 && col - 1 > t->state->val && col > 100) { int ts = wp->w_buffer->b_p_ts; /* Guess that a character won't use more columns than * 'tabstop', with a minimum of 4. */ if (ts < 4) ts = 4; result = col > t->state->val * ts; } if (!result) result = nfa_re_num_cmp(t->state->val, op, (long_u)win_linetabsize(wp, regline, col) + 1); if (result) { add_here = TRUE; add_state = t->state->out; } } break; case NFA_MARK: case NFA_MARK_GT: case NFA_MARK_LT: { pos_T *pos = getmark_buf(reg_buf, t->state->val, FALSE); /* Compare the mark position to the match position. */ result = (pos != NULL /* mark doesn't exist */ && pos->lnum > 0 /* mark isn't set in reg_buf */ && (pos->lnum == reglnum + reg_firstlnum ? (pos->col == (colnr_T)(reginput - regline) ? t->state->c == NFA_MARK : (pos->col < (colnr_T)(reginput - regline) ? t->state->c == NFA_MARK_GT : t->state->c == NFA_MARK_LT)) : (pos->lnum < reglnum + reg_firstlnum ? t->state->c == NFA_MARK_GT : t->state->c == NFA_MARK_LT))); if (result) { add_here = TRUE; add_state = t->state->out; } break; } case NFA_CURSOR: result = (reg_win != NULL && (reglnum + reg_firstlnum == reg_win->w_cursor.lnum) && ((colnr_T)(reginput - regline) == reg_win->w_cursor.col)); if (result) { add_here = TRUE; add_state = t->state->out; } break; case NFA_VISUAL: result = reg_match_visual(); if (result) { add_here = TRUE; add_state = t->state->out; } break; case NFA_MOPEN1: case NFA_MOPEN2: case NFA_MOPEN3: case NFA_MOPEN4: case NFA_MOPEN5: case NFA_MOPEN6: case NFA_MOPEN7: case NFA_MOPEN8: case NFA_MOPEN9: #ifdef FEAT_SYN_HL case NFA_ZOPEN: case NFA_ZOPEN1: case NFA_ZOPEN2: case NFA_ZOPEN3: case NFA_ZOPEN4: case NFA_ZOPEN5: case NFA_ZOPEN6: case NFA_ZOPEN7: case NFA_ZOPEN8: case NFA_ZOPEN9: #endif case NFA_NOPEN: case NFA_ZSTART: /* These states are only added to be able to bail out when * they are added again, nothing is to be done. */ break; default: /* regular character */ { int c = t->state->c; #ifdef DEBUG if (c < 0) EMSGN("INTERNAL: Negative state char: %ld", c); #endif result = (c == curc); if (!result && ireg_ic) result = MB_TOLOWER(c) == MB_TOLOWER(curc); #ifdef FEAT_MBYTE /* If ireg_icombine is not set only skip over the character * itself. When it is set skip over composing characters. */ if (result && enc_utf8 && !ireg_icombine) clen = utf_ptr2len(reginput); #endif ADD_STATE_IF_MATCH(t->state); break; } } /* switch (t->state->c) */ if (add_state != NULL) { nfa_pim_T *pim; nfa_pim_T pim_copy; if (t->pim.result == NFA_PIM_UNUSED) pim = NULL; else pim = &t->pim; /* Handle the postponed invisible match if the match might end * without advancing and before the end of the line. */ if (pim != NULL && (clen == 0 || match_follows(add_state, 0))) { if (pim->result == NFA_PIM_TODO) { #ifdef ENABLE_LOG fprintf(log_fd, "\n"); fprintf(log_fd, "==================================\n"); fprintf(log_fd, "Postponed recursive nfa_regmatch()\n"); fprintf(log_fd, "\n"); #endif result = recursive_regmatch(pim->state, pim, prog, submatch, m, &listids); pim->result = result ? NFA_PIM_MATCH : NFA_PIM_NOMATCH; /* for \@! and \@<! it is a match when the result is * FALSE */ if (result != (pim->state->c == NFA_START_INVISIBLE_NEG || pim->state->c == NFA_START_INVISIBLE_NEG_FIRST || pim->state->c == NFA_START_INVISIBLE_BEFORE_NEG || pim->state->c == NFA_START_INVISIBLE_BEFORE_NEG_FIRST)) { /* Copy submatch info from the recursive call */ copy_sub_off(&pim->subs.norm, &m->norm); #ifdef FEAT_SYN_HL if (nfa_has_zsubexpr) copy_sub_off(&pim->subs.synt, &m->synt); #endif } } else { result = (pim->result == NFA_PIM_MATCH); #ifdef ENABLE_LOG fprintf(log_fd, "\n"); fprintf(log_fd, "Using previous recursive nfa_regmatch() result, result == %d\n", pim->result); fprintf(log_fd, "MATCH = %s\n", result == TRUE ? "OK" : "FALSE"); fprintf(log_fd, "\n"); #endif } /* for \@! and \@<! it is a match when result is FALSE */ if (result != (pim->state->c == NFA_START_INVISIBLE_NEG || pim->state->c == NFA_START_INVISIBLE_NEG_FIRST || pim->state->c == NFA_START_INVISIBLE_BEFORE_NEG || pim->state->c == NFA_START_INVISIBLE_BEFORE_NEG_FIRST)) { /* Copy submatch info from the recursive call */ copy_sub_off(&t->subs.norm, &pim->subs.norm); #ifdef FEAT_SYN_HL if (nfa_has_zsubexpr) copy_sub_off(&t->subs.synt, &pim->subs.synt); #endif } else /* look-behind match failed, don't add the state */ continue; /* Postponed invisible match was handled, don't add it to * following states. */ pim = NULL; } /* If "pim" points into l->t it will become invalid when * adding the state causes the list to be reallocated. Make a * local copy to avoid that. */ if (pim == &t->pim) { copy_pim(&pim_copy, pim); pim = &pim_copy; } if (add_here) addstate_here(thislist, add_state, &t->subs, pim, &listidx); else { addstate(nextlist, add_state, &t->subs, pim, add_off); if (add_count > 0) nextlist->t[nextlist->n - 1].count = add_count; } } } /* for (thislist = thislist; thislist->state; thislist++) */ /* Look for the start of a match in the current position by adding the * start state to the list of states. * The first found match is the leftmost one, thus the order of states * matters! * Do not add the start state in recursive calls of nfa_regmatch(), * because recursive calls should only start in the first position. * Unless "nfa_endp" is not NULL, then we match the end position. * Also don't start a match past the first line. */ if (nfa_match == FALSE && ((toplevel && reglnum == 0 && clen != 0 && (ireg_maxcol == 0 || (colnr_T)(reginput - regline) < ireg_maxcol)) || (nfa_endp != NULL && (REG_MULTI ? (reglnum < nfa_endp->se_u.pos.lnum || (reglnum == nfa_endp->se_u.pos.lnum && (int)(reginput - regline) < nfa_endp->se_u.pos.col)) : reginput < nfa_endp->se_u.ptr)))) { #ifdef ENABLE_LOG fprintf(log_fd, "(---) STARTSTATE\n"); #endif /* Inline optimized code for addstate() if we know the state is * the first MOPEN. */ if (toplevel) { int add = TRUE; int c; if (prog->regstart != NUL && clen != 0) { if (nextlist->n == 0) { colnr_T col = (colnr_T)(reginput - regline) + clen; /* Nextlist is empty, we can skip ahead to the * character that must appear at the start. */ if (skip_to_start(prog->regstart, &col) == FAIL) break; #ifdef ENABLE_LOG fprintf(log_fd, " Skipping ahead %d bytes to regstart\n", col - ((colnr_T)(reginput - regline) + clen)); #endif reginput = regline + col - clen; } else { /* Checking if the required start character matches is * cheaper than adding a state that won't match. */ c = PTR2CHAR(reginput + clen); if (c != prog->regstart && (!ireg_ic || MB_TOLOWER(c) != MB_TOLOWER(prog->regstart))) { #ifdef ENABLE_LOG fprintf(log_fd, " Skipping start state, regstart does not match\n"); #endif add = FALSE; } } } if (add) { if (REG_MULTI) m->norm.list.multi[0].start_col = (colnr_T)(reginput - regline) + clen; else m->norm.list.line[0].start = reginput + clen; addstate(nextlist, start->out, m, NULL, clen); } } else addstate(nextlist, start, m, NULL, clen); } #ifdef ENABLE_LOG fprintf(log_fd, ">>> Thislist had %d states available: ", thislist->n); { int i; for (i = 0; i < thislist->n; i++) fprintf(log_fd, "%d ", abs(thislist->t[i].state->id)); } fprintf(log_fd, "\n"); #endif nextchar: /* Advance to the next character, or advance to the next line, or * finish. */ if (clen != 0) reginput += clen; else if (go_to_nextline || (nfa_endp != NULL && REG_MULTI && reglnum < nfa_endp->se_u.pos.lnum)) reg_nextline(); else break; /* Allow interrupting with CTRL-C. */ line_breakcheck(); if (got_int) break; #ifdef FEAT_RELTIME /* Check for timeout once in a twenty times to avoid overhead. */ if (nfa_time_limit != NULL && ++nfa_time_count == 20) { nfa_time_count = 0; if (profile_passed_limit(nfa_time_limit)) break; } #endif } #ifdef ENABLE_LOG if (log_fd != stderr) fclose(log_fd); log_fd = NULL; #endif theend: /* Free memory */ vim_free(list[0].t); vim_free(list[1].t); vim_free(listids); #undef ADD_STATE_IF_MATCH #ifdef NFA_REGEXP_DEBUG_LOG fclose(debug); #endif return nfa_match; } /* * Try match of "prog" with at regline["col"]. * Returns <= 0 for failure, number of lines contained in the match otherwise. */ static long nfa_regtry( nfa_regprog_T *prog, colnr_T col, proftime_T *tm UNUSED) /* timeout limit or NULL */ { int i; regsubs_T subs, m; nfa_state_T *start = prog->start; int result; #ifdef ENABLE_LOG FILE *f; #endif reginput = regline + col; #ifdef FEAT_RELTIME nfa_time_limit = tm; nfa_time_count = 0; #endif #ifdef ENABLE_LOG f = fopen(NFA_REGEXP_RUN_LOG, "a"); if (f != NULL) { fprintf(f, "\n\n\t=======================================================\n"); #ifdef DEBUG fprintf(f, "\tRegexp is \"%s\"\n", nfa_regengine.expr); #endif fprintf(f, "\tInput text is \"%s\" \n", reginput); fprintf(f, "\t=======================================================\n\n"); nfa_print_state(f, start); fprintf(f, "\n\n"); fclose(f); } else EMSG(_("Could not open temporary log file for writing ")); #endif clear_sub(&subs.norm); clear_sub(&m.norm); #ifdef FEAT_SYN_HL clear_sub(&subs.synt); clear_sub(&m.synt); #endif result = nfa_regmatch(prog, start, &subs, &m); if (result == FALSE) return 0; else if (result == NFA_TOO_EXPENSIVE) return result; cleanup_subexpr(); if (REG_MULTI) { for (i = 0; i < subs.norm.in_use; i++) { reg_startpos[i].lnum = subs.norm.list.multi[i].start_lnum; reg_startpos[i].col = subs.norm.list.multi[i].start_col; reg_endpos[i].lnum = subs.norm.list.multi[i].end_lnum; reg_endpos[i].col = subs.norm.list.multi[i].end_col; } if (reg_startpos[0].lnum < 0) { reg_startpos[0].lnum = 0; reg_startpos[0].col = col; } if (reg_endpos[0].lnum < 0) { /* pattern has a \ze but it didn't match, use current end */ reg_endpos[0].lnum = reglnum; reg_endpos[0].col = (int)(reginput - regline); } else /* Use line number of "\ze". */ reglnum = reg_endpos[0].lnum; } else { for (i = 0; i < subs.norm.in_use; i++) { reg_startp[i] = subs.norm.list.line[i].start; reg_endp[i] = subs.norm.list.line[i].end; } if (reg_startp[0] == NULL) reg_startp[0] = regline + col; if (reg_endp[0] == NULL) reg_endp[0] = reginput; } #ifdef FEAT_SYN_HL /* Package any found \z(...\) matches for export. Default is none. */ unref_extmatch(re_extmatch_out); re_extmatch_out = NULL; if (prog->reghasz == REX_SET) { cleanup_zsubexpr(); re_extmatch_out = make_extmatch(); /* Loop over \z1, \z2, etc. There is no \z0. */ for (i = 1; i < subs.synt.in_use; i++) { if (REG_MULTI) { struct multipos *mpos = &subs.synt.list.multi[i]; /* Only accept single line matches that are valid. */ if (mpos->start_lnum >= 0 && mpos->start_lnum == mpos->end_lnum && mpos->end_col >= mpos->start_col) re_extmatch_out->matches[i] = vim_strnsave(reg_getline(mpos->start_lnum) + mpos->start_col, mpos->end_col - mpos->start_col); } else { struct linepos *lpos = &subs.synt.list.line[i]; if (lpos->start != NULL && lpos->end != NULL) re_extmatch_out->matches[i] = vim_strnsave(lpos->start, (int)(lpos->end - lpos->start)); } } } #endif return 1 + reglnum; } /* * Match a regexp against a string ("line" points to the string) or multiple * lines ("line" is NULL, use reg_getline()). * * Returns <= 0 for failure, number of lines contained in the match otherwise. */ static long nfa_regexec_both( char_u *line, colnr_T startcol, /* column to start looking for match */ proftime_T *tm) /* timeout limit or NULL */ { nfa_regprog_T *prog; long retval = 0L; int i; colnr_T col = startcol; if (REG_MULTI) { prog = (nfa_regprog_T *)reg_mmatch->regprog; line = reg_getline((linenr_T)0); /* relative to the cursor */ reg_startpos = reg_mmatch->startpos; reg_endpos = reg_mmatch->endpos; } else { prog = (nfa_regprog_T *)reg_match->regprog; reg_startp = reg_match->startp; reg_endp = reg_match->endp; } /* Be paranoid... */ if (prog == NULL || line == NULL) { EMSG(_(e_null)); goto theend; } /* If pattern contains "\c" or "\C": overrule value of ireg_ic */ if (prog->regflags & RF_ICASE) ireg_ic = TRUE; else if (prog->regflags & RF_NOICASE) ireg_ic = FALSE; #ifdef FEAT_MBYTE /* If pattern contains "\Z" overrule value of ireg_icombine */ if (prog->regflags & RF_ICOMBINE) ireg_icombine = TRUE; #endif regline = line; reglnum = 0; /* relative to line */ nfa_has_zend = prog->has_zend; nfa_has_backref = prog->has_backref; nfa_nsubexpr = prog->nsubexp; nfa_listid = 1; nfa_alt_listid = 2; nfa_regengine.expr = prog->pattern; if (prog->reganch && col > 0) return 0L; need_clear_subexpr = TRUE; #ifdef FEAT_SYN_HL /* Clear the external match subpointers if necessary. */ if (prog->reghasz == REX_SET) { nfa_has_zsubexpr = TRUE; need_clear_zsubexpr = TRUE; } else nfa_has_zsubexpr = FALSE; #endif if (prog->regstart != NUL) { /* Skip ahead until a character we know the match must start with. * When there is none there is no match. */ if (skip_to_start(prog->regstart, &col) == FAIL) return 0L; /* If match_text is set it contains the full text that must match. * Nothing else to try. Doesn't handle combining chars well. */ if (prog->match_text != NULL #ifdef FEAT_MBYTE && !ireg_icombine #endif ) return find_match_text(col, prog->regstart, prog->match_text); } /* If the start column is past the maximum column: no need to try. */ if (ireg_maxcol > 0 && col >= ireg_maxcol) goto theend; nstate = prog->nstate; for (i = 0; i < nstate; ++i) { prog->state[i].id = i; prog->state[i].lastlist[0] = 0; prog->state[i].lastlist[1] = 0; } retval = nfa_regtry(prog, col, tm); nfa_regengine.expr = NULL; theend: return retval; } /* * Compile a regular expression into internal code for the NFA matcher. * Returns the program in allocated space. Returns NULL for an error. */ static regprog_T * nfa_regcomp(char_u *expr, int re_flags) { nfa_regprog_T *prog = NULL; size_t prog_size; int *postfix; if (expr == NULL) return NULL; nfa_regengine.expr = expr; nfa_re_flags = re_flags; init_class_tab(); if (nfa_regcomp_start(expr, re_flags) == FAIL) return NULL; /* Build postfix form of the regexp. Needed to build the NFA * (and count its size). */ postfix = re2post(); if (postfix == NULL) { /* TODO: only give this error for debugging? */ if (post_ptr >= post_end) EMSGN("Internal error: estimated max number of states insufficient: %ld", post_end - post_start); goto fail; /* Cascaded (syntax?) error */ } /* * In order to build the NFA, we parse the input regexp twice: * 1. first pass to count size (so we can allocate space) * 2. second to emit code */ #ifdef ENABLE_LOG { FILE *f = fopen(NFA_REGEXP_RUN_LOG, "a"); if (f != NULL) { fprintf(f, "\n*****************************\n\n\n\n\tCompiling regexp \"%s\" ... hold on !\n", expr); fclose(f); } } #endif /* * PASS 1 * Count number of NFA states in "nstate". Do not build the NFA. */ post2nfa(postfix, post_ptr, TRUE); /* allocate the regprog with space for the compiled regexp */ prog_size = sizeof(nfa_regprog_T) + sizeof(nfa_state_T) * (nstate - 1); prog = (nfa_regprog_T *)lalloc(prog_size, TRUE); if (prog == NULL) goto fail; state_ptr = prog->state; /* * PASS 2 * Build the NFA */ prog->start = post2nfa(postfix, post_ptr, FALSE); if (prog->start == NULL) goto fail; prog->regflags = regflags; prog->engine = &nfa_regengine; prog->nstate = nstate; prog->has_zend = nfa_has_zend; prog->has_backref = nfa_has_backref; prog->nsubexp = regnpar; nfa_postprocess(prog); prog->reganch = nfa_get_reganch(prog->start, 0); prog->regstart = nfa_get_regstart(prog->start, 0); prog->match_text = nfa_get_match_text(prog->start); #ifdef ENABLE_LOG nfa_postfix_dump(expr, OK); nfa_dump(prog); #endif #ifdef FEAT_SYN_HL /* Remember whether this pattern has any \z specials in it. */ prog->reghasz = re_has_z; #endif prog->pattern = vim_strsave(expr); nfa_regengine.expr = NULL; out: vim_free(post_start); post_start = post_ptr = post_end = NULL; state_ptr = NULL; return (regprog_T *)prog; fail: vim_free(prog); prog = NULL; #ifdef ENABLE_LOG nfa_postfix_dump(expr, FAIL); #endif nfa_regengine.expr = NULL; goto out; } /* * Free a compiled regexp program, returned by nfa_regcomp(). */ static void nfa_regfree(regprog_T *prog) { if (prog != NULL) { vim_free(((nfa_regprog_T *)prog)->match_text); vim_free(((nfa_regprog_T *)prog)->pattern); vim_free(prog); } } /* * Match a regexp against a string. * "rmp->regprog" is a compiled regexp as returned by nfa_regcomp(). * Uses curbuf for line count and 'iskeyword'. * If "line_lbr" is TRUE consider a "\n" in "line" to be a line break. * * Returns <= 0 for failure, number of lines contained in the match otherwise. */ static int nfa_regexec_nl( regmatch_T *rmp, char_u *line, /* string to match against */ colnr_T col, /* column to start looking for match */ int line_lbr) { reg_match = rmp; reg_mmatch = NULL; reg_maxline = 0; reg_line_lbr = line_lbr; reg_buf = curbuf; reg_win = NULL; ireg_ic = rmp->rm_ic; #ifdef FEAT_MBYTE ireg_icombine = FALSE; #endif ireg_maxcol = 0; return nfa_regexec_both(line, col, NULL); } /* * Match a regexp against multiple lines. * "rmp->regprog" is a compiled regexp as returned by vim_regcomp(). * Uses curbuf for line count and 'iskeyword'. * * Return <= 0 if there is no match. Return number of lines contained in the * match otherwise. * * Note: the body is the same as bt_regexec() except for nfa_regexec_both() * * ! Also NOTE : match may actually be in another line. e.g.: * when r.e. is \nc, cursor is at 'a' and the text buffer looks like * * +-------------------------+ * |a | * |b | * |c | * | | * +-------------------------+ * * then nfa_regexec_multi() returns 3. while the original * vim_regexec_multi() returns 0 and a second call at line 2 will return 2. * * FIXME if this behavior is not compatible. */ static long nfa_regexec_multi( regmmatch_T *rmp, win_T *win, /* window in which to search or NULL */ buf_T *buf, /* buffer in which to search */ linenr_T lnum, /* nr of line to start looking for match */ colnr_T col, /* column to start looking for match */ proftime_T *tm) /* timeout limit or NULL */ { reg_match = NULL; reg_mmatch = rmp; reg_buf = buf; reg_win = win; reg_firstlnum = lnum; reg_maxline = reg_buf->b_ml.ml_line_count - lnum; reg_line_lbr = FALSE; ireg_ic = rmp->rmm_ic; #ifdef FEAT_MBYTE ireg_icombine = FALSE; #endif ireg_maxcol = rmp->rmm_maxcol; return nfa_regexec_both(NULL, col, tm); } #ifdef DEBUG # undef ENABLE_LOG #endif