Mercurial > vim
view src/sha256.c @ 33471:baa62f464436 v9.0.1988
patch 9.0.1988: Vim9: potential use-after-free for class members
Commit: https://github.com/vim/vim/commit/d2f4800099733216e28d59e1a5710f624b0d9ec1
Author: Yegappan Lakshmanan <yegappan@yahoo.com>
Date: Thu Oct 5 20:24:18 2023 +0200
patch 9.0.1988: Vim9: potential use-after-free for class members
Problem: Vim9: potential use-after-free for class members
Solution: Use the class-related grow array for storing the
member type instead of using a temporary type
list grow array
Use the type list grow array associated with the class than using a
temporary type list grow array to allocate the class member type.
For simple types, a predefined type is used. For complex types, the type
is dynamically allocated from a grow array. For class variables, the
type grow array in the class should be used. So that the lifetime of the
type is same as the lifetime of the class.
closes: #13279
Signed-off-by: Christian Brabandt <cb@256bit.org>
Co-authored-by: Yegappan Lakshmanan <yegappan@yahoo.com>
author | Christian Brabandt <cb@256bit.org> |
---|---|
date | Thu, 05 Oct 2023 20:30:11 +0200 |
parents | c1d1639b52dd |
children |
line wrap: on
line source
/* vi:set ts=8 sts=4 sw=4 noet: * * VIM - Vi IMproved by Bram Moolenaar * * Do ":help uganda" in Vim to read copying and usage conditions. * Do ":help credits" in Vim to see a list of people who contributed. * See README.txt for an overview of the Vim source code. * * FIPS-180-2 compliant SHA-256 implementation * GPL by Christophe Devine, applies to older version. * Modified for md5deep, in public domain. * Modified For Vim, Mohsin Ahmed, http://www.cs.albany.edu/~mosh * Mohsin Ahmed states this work is distributed under the VIM License or GPL, * at your choice. * * Vim specific notes: * Functions exported by this file: * 1. sha256_key() hashes the password to 64 bytes char string. * 2. sha2_seed() generates a random header. * sha256_self_test() is implicitly called once. */ #include "vim.h" #if defined(FEAT_CRYPT) || defined(FEAT_PERSISTENT_UNDO) #define GET_UINT32(n, b, i) \ { \ (n) = ( (UINT32_T)(b)[(i) ] << 24) \ | ( (UINT32_T)(b)[(i) + 1] << 16) \ | ( (UINT32_T)(b)[(i) + 2] << 8) \ | ( (UINT32_T)(b)[(i) + 3] ); \ } #define PUT_UINT32(n,b,i) \ { \ (b)[(i) ] = (char_u)((n) >> 24); \ (b)[(i) + 1] = (char_u)((n) >> 16); \ (b)[(i) + 2] = (char_u)((n) >> 8); \ (b)[(i) + 3] = (char_u)((n) ); \ } void sha256_start(context_sha256_T *ctx) { ctx->total[0] = 0; ctx->total[1] = 0; ctx->state[0] = 0x6A09E667; ctx->state[1] = 0xBB67AE85; ctx->state[2] = 0x3C6EF372; ctx->state[3] = 0xA54FF53A; ctx->state[4] = 0x510E527F; ctx->state[5] = 0x9B05688C; ctx->state[6] = 0x1F83D9AB; ctx->state[7] = 0x5BE0CD19; } static void sha256_process(context_sha256_T *ctx, char_u data[64]) { UINT32_T temp1, temp2, W[64]; UINT32_T A, B, C, D, E, F, G, H; GET_UINT32(W[0], data, 0); GET_UINT32(W[1], data, 4); GET_UINT32(W[2], data, 8); GET_UINT32(W[3], data, 12); GET_UINT32(W[4], data, 16); GET_UINT32(W[5], data, 20); GET_UINT32(W[6], data, 24); GET_UINT32(W[7], data, 28); GET_UINT32(W[8], data, 32); GET_UINT32(W[9], data, 36); GET_UINT32(W[10], data, 40); GET_UINT32(W[11], data, 44); GET_UINT32(W[12], data, 48); GET_UINT32(W[13], data, 52); GET_UINT32(W[14], data, 56); GET_UINT32(W[15], data, 60); #define SHR(x, n) (((x) & 0xFFFFFFFF) >> (n)) #define ROTR(x, n) (SHR(x, n) | ((x) << (32 - (n)))) #define S0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3)) #define S1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10)) #define S2(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) #define S3(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) #define F0(x, y, z) (((x) & (y)) | ((z) & ((x) | (y)))) #define F1(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) #define R(t) \ ( \ W[t] = S1(W[(t) - 2]) + W[(t) - 7] + \ S0(W[(t) - 15]) + W[(t) - 16] \ ) #define P(a,b,c,d,e,f,g,h,x,K) \ { \ temp1 = (h) + S3(e) + F1(e, f, g) + (K) + (x); \ temp2 = S2(a) + F0(a, b, c); \ (d) += temp1; (h) = temp1 + temp2; \ } A = ctx->state[0]; B = ctx->state[1]; C = ctx->state[2]; D = ctx->state[3]; E = ctx->state[4]; F = ctx->state[5]; G = ctx->state[6]; H = ctx->state[7]; P( A, B, C, D, E, F, G, H, W[ 0], 0x428A2F98); P( H, A, B, C, D, E, F, G, W[ 1], 0x71374491); P( G, H, A, B, C, D, E, F, W[ 2], 0xB5C0FBCF); P( F, G, H, A, B, C, D, E, W[ 3], 0xE9B5DBA5); P( E, F, G, H, A, B, C, D, W[ 4], 0x3956C25B); P( D, E, F, G, H, A, B, C, W[ 5], 0x59F111F1); P( C, D, E, F, G, H, A, B, W[ 6], 0x923F82A4); P( B, C, D, E, F, G, H, A, W[ 7], 0xAB1C5ED5); P( A, B, C, D, E, F, G, H, W[ 8], 0xD807AA98); P( H, A, B, C, D, E, F, G, W[ 9], 0x12835B01); P( G, H, A, B, C, D, E, F, W[10], 0x243185BE); P( F, G, H, A, B, C, D, E, W[11], 0x550C7DC3); P( E, F, G, H, A, B, C, D, W[12], 0x72BE5D74); P( D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE); P( C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7); P( B, C, D, E, F, G, H, A, W[15], 0xC19BF174); P( A, B, C, D, E, F, G, H, R(16), 0xE49B69C1); P( H, A, B, C, D, E, F, G, R(17), 0xEFBE4786); P( G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6); P( F, G, H, A, B, C, D, E, R(19), 0x240CA1CC); P( E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F); P( D, E, F, G, H, A, B, C, R(21), 0x4A7484AA); P( C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC); P( B, C, D, E, F, G, H, A, R(23), 0x76F988DA); P( A, B, C, D, E, F, G, H, R(24), 0x983E5152); P( H, A, B, C, D, E, F, G, R(25), 0xA831C66D); P( G, H, A, B, C, D, E, F, R(26), 0xB00327C8); P( F, G, H, A, B, C, D, E, R(27), 0xBF597FC7); P( E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3); P( D, E, F, G, H, A, B, C, R(29), 0xD5A79147); P( C, D, E, F, G, H, A, B, R(30), 0x06CA6351); P( B, C, D, E, F, G, H, A, R(31), 0x14292967); P( A, B, C, D, E, F, G, H, R(32), 0x27B70A85); P( H, A, B, C, D, E, F, G, R(33), 0x2E1B2138); P( G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC); P( F, G, H, A, B, C, D, E, R(35), 0x53380D13); P( E, F, G, H, A, B, C, D, R(36), 0x650A7354); P( D, E, F, G, H, A, B, C, R(37), 0x766A0ABB); P( C, D, E, F, G, H, A, B, R(38), 0x81C2C92E); P( B, C, D, E, F, G, H, A, R(39), 0x92722C85); P( A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1); P( H, A, B, C, D, E, F, G, R(41), 0xA81A664B); P( G, H, A, B, C, D, E, F, R(42), 0xC24B8B70); P( F, G, H, A, B, C, D, E, R(43), 0xC76C51A3); P( E, F, G, H, A, B, C, D, R(44), 0xD192E819); P( D, E, F, G, H, A, B, C, R(45), 0xD6990624); P( C, D, E, F, G, H, A, B, R(46), 0xF40E3585); P( B, C, D, E, F, G, H, A, R(47), 0x106AA070); P( A, B, C, D, E, F, G, H, R(48), 0x19A4C116); P( H, A, B, C, D, E, F, G, R(49), 0x1E376C08); P( G, H, A, B, C, D, E, F, R(50), 0x2748774C); P( F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5); P( E, F, G, H, A, B, C, D, R(52), 0x391C0CB3); P( D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A); P( C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F); P( B, C, D, E, F, G, H, A, R(55), 0x682E6FF3); P( A, B, C, D, E, F, G, H, R(56), 0x748F82EE); P( H, A, B, C, D, E, F, G, R(57), 0x78A5636F); P( G, H, A, B, C, D, E, F, R(58), 0x84C87814); P( F, G, H, A, B, C, D, E, R(59), 0x8CC70208); P( E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA); P( D, E, F, G, H, A, B, C, R(61), 0xA4506CEB); P( C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7); P( B, C, D, E, F, G, H, A, R(63), 0xC67178F2); ctx->state[0] += A; ctx->state[1] += B; ctx->state[2] += C; ctx->state[3] += D; ctx->state[4] += E; ctx->state[5] += F; ctx->state[6] += G; ctx->state[7] += H; } void sha256_update(context_sha256_T *ctx, char_u *input, UINT32_T length) { UINT32_T left, fill; if (length == 0) return; left = ctx->total[0] & 0x3F; fill = 64 - left; ctx->total[0] += length; ctx->total[0] &= 0xFFFFFFFF; if (ctx->total[0] < length) ctx->total[1]++; if (left && length >= fill) { memcpy((void *)(ctx->buffer + left), (void *)input, fill); sha256_process(ctx, ctx->buffer); length -= fill; input += fill; left = 0; } while (length >= 64) { sha256_process(ctx, input); length -= 64; input += 64; } if (length) memcpy((void *)(ctx->buffer + left), (void *)input, length); } static char_u sha256_padding[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; void sha256_finish(context_sha256_T *ctx, char_u digest[32]) { UINT32_T last, padn; UINT32_T high, low; char_u msglen[8]; high = (ctx->total[0] >> 29) | (ctx->total[1] << 3); low = (ctx->total[0] << 3); PUT_UINT32(high, msglen, 0); PUT_UINT32(low, msglen, 4); last = ctx->total[0] & 0x3F; padn = (last < 56) ? (56 - last) : (120 - last); sha256_update(ctx, sha256_padding, padn); sha256_update(ctx, msglen, 8); PUT_UINT32(ctx->state[0], digest, 0); PUT_UINT32(ctx->state[1], digest, 4); PUT_UINT32(ctx->state[2], digest, 8); PUT_UINT32(ctx->state[3], digest, 12); PUT_UINT32(ctx->state[4], digest, 16); PUT_UINT32(ctx->state[5], digest, 20); PUT_UINT32(ctx->state[6], digest, 24); PUT_UINT32(ctx->state[7], digest, 28); } #endif // FEAT_CRYPT || FEAT_PERSISTENT_UNDO #if defined(FEAT_CRYPT) || defined(PROTO) /* * Returns hex digest of "buf[buf_len]" in a static array. * if "salt" is not NULL also do "salt[salt_len]". */ char_u * sha256_bytes( char_u *buf, int buf_len, char_u *salt, int salt_len) { char_u sha256sum[32]; static char_u hexit[65]; int j; context_sha256_T ctx; sha256_self_test(); sha256_start(&ctx); sha256_update(&ctx, buf, buf_len); if (salt != NULL) sha256_update(&ctx, salt, salt_len); sha256_finish(&ctx, sha256sum); for (j = 0; j < 32; j++) sprintf((char *)hexit + j * 2, "%02x", sha256sum[j]); hexit[sizeof(hexit) - 1] = '\0'; return hexit; } /* * Returns sha256(buf) as 64 hex chars in static array. */ char_u * sha256_key( char_u *buf, char_u *salt, int salt_len) { // No passwd means don't encrypt if (buf == NULL || *buf == NUL) return (char_u *)""; return sha256_bytes(buf, (int)STRLEN(buf), salt, salt_len); } /* * These are the standard FIPS-180-2 test vectors */ static char *sha_self_test_msg[] = { "abc", "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", NULL }; static char *sha_self_test_vector[] = { "ba7816bf8f01cfea414140de5dae2223" \ "b00361a396177a9cb410ff61f20015ad", "248d6a61d20638b8e5c026930c3e6039" \ "a33ce45964ff2167f6ecedd419db06c1", "cdc76e5c9914fb9281a1c7e284d73e67" \ "f1809a48a497200e046d39ccc7112cd0" }; /* * Perform a test on the SHA256 algorithm. * Return FAIL or OK. */ int sha256_self_test(void) { int i, j; char output[65]; context_sha256_T ctx; char_u buf[1000]; char_u sha256sum[32]; static int failures = 0; char_u *hexit; static int sha256_self_tested = 0; if (sha256_self_tested > 0) return failures > 0 ? FAIL : OK; sha256_self_tested = 1; for (i = 0; i < 3; i++) { if (i < 2) { hexit = sha256_bytes((char_u *)sha_self_test_msg[i], (int)STRLEN(sha_self_test_msg[i]), NULL, 0); STRCPY(output, hexit); } else { sha256_start(&ctx); vim_memset(buf, 'a', 1000); for (j = 0; j < 1000; j++) sha256_update(&ctx, (char_u *)buf, 1000); sha256_finish(&ctx, sha256sum); for (j = 0; j < 32; j++) sprintf(output + j * 2, "%02x", sha256sum[j]); } if (memcmp(output, sha_self_test_vector[i], 64)) { failures++; output[sizeof(output) - 1] = '\0'; // printf("sha256_self_test %d failed %s\n", i, output); } } return failures > 0 ? FAIL : OK; } static unsigned int get_some_time(void) { # ifdef HAVE_GETTIMEOFDAY struct timeval tv; // Using usec makes it less predictable. gettimeofday(&tv, NULL); return (unsigned int)(tv.tv_sec + tv.tv_usec); # else return (unsigned int)time(NULL); # endif } /* * Fill "header[header_len]" with random_data. * Also "salt[salt_len]" when "salt" is not NULL. */ void sha2_seed( char_u *header, int header_len, char_u *salt, int salt_len) { int i; static char_u random_data[1000]; char_u sha256sum[32]; context_sha256_T ctx; srand(get_some_time()); for (i = 0; i < (int)sizeof(random_data) - 1; i++) random_data[i] = (char_u)((get_some_time() ^ rand()) & 0xff); sha256_start(&ctx); sha256_update(&ctx, (char_u *)random_data, sizeof(random_data)); sha256_finish(&ctx, sha256sum); // put first block into header. for (i = 0; i < header_len; i++) header[i] = sha256sum[i % sizeof(sha256sum)]; // put remaining block into salt. if (salt != NULL) for (i = 0; i < salt_len; i++) salt[i] = sha256sum[(i + header_len) % sizeof(sha256sum)]; } #endif // FEAT_CRYPT