Mercurial > vim
view src/alloc.c @ 30249:c0f0118b6790 v9.0.0460
patch 9.0.0460: loop variable can't be found
Commit: https://github.com/vim/vim/commit/766ae5b252eaa6ee2bff70f1913d1cbfb51101bd
Author: Bram Moolenaar <Bram@vim.org>
Date: Wed Sep 14 00:30:51 2022 +0100
patch 9.0.0460: loop variable can't be found
Problem: Loop variable can't be found.
Solution: Adjust block_id of the loop variable each round.
author | Bram Moolenaar <Bram@vim.org> |
---|---|
date | Wed, 14 Sep 2022 01:45:04 +0200 |
parents | 84c18beec6bc |
children | d7066cbac096 |
line wrap: on
line source
/* vi:set ts=8 sts=4 sw=4 noet: * * VIM - Vi IMproved by Bram Moolenaar * * Do ":help uganda" in Vim to read copying and usage conditions. * Do ":help credits" in Vim to see a list of people who contributed. * See README.txt for an overview of the Vim source code. */ /* * alloc.c: functions for memory management */ #include "vim.h" /********************************************************************** * Various routines dealing with allocation and deallocation of memory. */ #if defined(MEM_PROFILE) || defined(PROTO) # define MEM_SIZES 8200 static long_u mem_allocs[MEM_SIZES]; static long_u mem_frees[MEM_SIZES]; static long_u mem_allocated; static long_u mem_freed; static long_u mem_peak; static long_u num_alloc; static long_u num_freed; static void mem_pre_alloc_s(size_t *sizep) { *sizep += sizeof(size_t); } static void mem_pre_alloc_l(size_t *sizep) { *sizep += sizeof(size_t); } static void mem_post_alloc( void **pp, size_t size) { if (*pp == NULL) return; size -= sizeof(size_t); *(long_u *)*pp = size; if (size <= MEM_SIZES-1) mem_allocs[size-1]++; else mem_allocs[MEM_SIZES-1]++; mem_allocated += size; if (mem_allocated - mem_freed > mem_peak) mem_peak = mem_allocated - mem_freed; num_alloc++; *pp = (void *)((char *)*pp + sizeof(size_t)); } static void mem_pre_free(void **pp) { long_u size; *pp = (void *)((char *)*pp - sizeof(size_t)); size = *(size_t *)*pp; if (size <= MEM_SIZES-1) mem_frees[size-1]++; else mem_frees[MEM_SIZES-1]++; mem_freed += size; num_freed++; } /* * called on exit via atexit() */ void vim_mem_profile_dump(void) { int i, j; printf("\r\n"); j = 0; for (i = 0; i < MEM_SIZES - 1; i++) { if (mem_allocs[i] == 0 && mem_frees[i] == 0) continue; if (mem_frees[i] > mem_allocs[i]) printf("\r\n%s", _("ERROR: ")); printf("[%4d / %4lu-%-4lu] ", i + 1, mem_allocs[i], mem_frees[i]); j++; if (j > 3) { j = 0; printf("\r\n"); } } i = MEM_SIZES - 1; if (mem_allocs[i]) { printf("\r\n"); if (mem_frees[i] > mem_allocs[i]) puts(_("ERROR: ")); printf("[>%d / %4lu-%-4lu]", i, mem_allocs[i], mem_frees[i]); } printf(_("\n[bytes] total alloc-freed %lu-%lu, in use %lu, peak use %lu\n"), mem_allocated, mem_freed, mem_allocated - mem_freed, mem_peak); printf(_("[calls] total re/malloc()'s %lu, total free()'s %lu\n\n"), num_alloc, num_freed); } #endif // MEM_PROFILE #ifdef FEAT_EVAL int alloc_does_fail(size_t size) { if (alloc_fail_countdown == 0) { if (--alloc_fail_repeat <= 0) alloc_fail_id = 0; do_outofmem_msg(size); return TRUE; } --alloc_fail_countdown; return FALSE; } #endif /* * Some memory is reserved for error messages and for being able to * call mf_release_all(), which needs some memory for mf_trans_add(). */ #define KEEP_ROOM (2 * 8192L) #define KEEP_ROOM_KB (KEEP_ROOM / 1024L) /* * The normal way to allocate memory. This handles an out-of-memory situation * as well as possible, still returns NULL when we're completely out. */ void * alloc(size_t size) { return lalloc(size, TRUE); } #if defined(FEAT_QUICKFIX) || defined(PROTO) /* * alloc() with an ID for alloc_fail(). */ void * alloc_id(size_t size, alloc_id_T id UNUSED) { # ifdef FEAT_EVAL if (alloc_fail_id == id && alloc_does_fail(size)) return NULL; # endif return lalloc(size, TRUE); } #endif /* * Allocate memory and set all bytes to zero. */ void * alloc_clear(size_t size) { void *p; p = lalloc(size, TRUE); if (p != NULL) (void)vim_memset(p, 0, size); return p; } /* * Same as alloc_clear() but with allocation id for testing */ void * alloc_clear_id(size_t size, alloc_id_T id UNUSED) { #ifdef FEAT_EVAL if (alloc_fail_id == id && alloc_does_fail(size)) return NULL; #endif return alloc_clear(size); } /* * Allocate memory like lalloc() and set all bytes to zero. */ void * lalloc_clear(size_t size, int message) { void *p; p = lalloc(size, message); if (p != NULL) (void)vim_memset(p, 0, size); return p; } /* * Low level memory allocation function. * This is used often, KEEP IT FAST! */ void * lalloc(size_t size, int message) { void *p; // pointer to new storage space static int releasing = FALSE; // don't do mf_release_all() recursive int try_again; #if defined(HAVE_AVAIL_MEM) static size_t allocated = 0; // allocated since last avail check #endif // Safety check for allocating zero bytes if (size == 0) { // Don't hide this message emsg_silent = 0; iemsg(_(e_internal_error_lalloc_zero)); return NULL; } #ifdef MEM_PROFILE mem_pre_alloc_l(&size); #endif // Loop when out of memory: Try to release some memfile blocks and // if some blocks are released call malloc again. for (;;) { // Handle three kinds of systems: // 1. No check for available memory: Just return. // 2. Slow check for available memory: call mch_avail_mem() after // allocating KEEP_ROOM amount of memory. // 3. Strict check for available memory: call mch_avail_mem() if ((p = malloc(size)) != NULL) { #ifndef HAVE_AVAIL_MEM // 1. No check for available memory: Just return. goto theend; #else // 2. Slow check for available memory: call mch_avail_mem() after // allocating (KEEP_ROOM / 2) amount of memory. allocated += size; if (allocated < KEEP_ROOM / 2) goto theend; allocated = 0; // 3. check for available memory: call mch_avail_mem() if (mch_avail_mem(TRUE) < KEEP_ROOM_KB && !releasing) { free(p); // System is low... no go! p = NULL; } else goto theend; #endif } // Remember that mf_release_all() is being called to avoid an endless // loop, because mf_release_all() may call alloc() recursively. if (releasing) break; releasing = TRUE; clear_sb_text(TRUE); // free any scrollback text try_again = mf_release_all(); // release as many blocks as possible releasing = FALSE; if (!try_again) break; } if (message && p == NULL) do_outofmem_msg(size); theend: #ifdef MEM_PROFILE mem_post_alloc(&p, size); #endif return p; } /* * lalloc() with an ID for alloc_fail(). */ #if defined(FEAT_SIGNS) || defined(PROTO) void * lalloc_id(size_t size, int message, alloc_id_T id UNUSED) { #ifdef FEAT_EVAL if (alloc_fail_id == id && alloc_does_fail(size)) return NULL; #endif return (lalloc(size, message)); } #endif #if defined(MEM_PROFILE) || defined(PROTO) /* * realloc() with memory profiling. */ void * mem_realloc(void *ptr, size_t size) { void *p; mem_pre_free(&ptr); mem_pre_alloc_s(&size); p = realloc(ptr, size); mem_post_alloc(&p, size); return p; } #endif /* * Avoid repeating the error message many times (they take 1 second each). * Did_outofmem_msg is reset when a character is read. */ void do_outofmem_msg(size_t size) { if (did_outofmem_msg) return; // Don't hide this message emsg_silent = 0; // Must come first to avoid coming back here when printing the error // message fails, e.g. when setting v:errmsg. did_outofmem_msg = TRUE; semsg(_(e_out_of_memory_allocating_nr_bytes), (long_u)size); if (starting == NO_SCREEN) // Not even finished with initializations and already out of // memory? Then nothing is going to work, exit. mch_exit(123); } #if defined(EXITFREE) || defined(PROTO) /* * Free everything that we allocated. * Can be used to detect memory leaks, e.g., with ccmalloc. * NOTE: This is tricky! Things are freed that functions depend on. Don't be * surprised if Vim crashes... * Some things can't be freed, esp. things local to a library function. */ void free_all_mem(void) { buf_T *buf, *nextbuf; // When we cause a crash here it is caught and Vim tries to exit cleanly. // Don't try freeing everything again. if (entered_free_all_mem) return; entered_free_all_mem = TRUE; // Don't want to trigger autocommands from here on. block_autocmds(); // Close all tabs and windows. Reset 'equalalways' to avoid redraws. p_ea = FALSE; if (first_tabpage != NULL && first_tabpage->tp_next != NULL) do_cmdline_cmd((char_u *)"tabonly!"); if (!ONE_WINDOW) do_cmdline_cmd((char_u *)"only!"); # if defined(FEAT_SPELL) // Free all spell info. spell_free_all(); # endif # if defined(FEAT_BEVAL_TERM) ui_remove_balloon(); # endif # ifdef FEAT_PROP_POPUP if (curwin != NULL) close_all_popups(TRUE); # endif // Clear user commands (before deleting buffers). ex_comclear(NULL); // When exiting from mainerr_arg_missing curbuf has not been initialized, // and not much else. if (curbuf != NULL) { # ifdef FEAT_MENU // Clear menus. do_cmdline_cmd((char_u *)"aunmenu *"); do_cmdline_cmd((char_u *)"tlunmenu *"); # ifdef FEAT_MULTI_LANG do_cmdline_cmd((char_u *)"menutranslate clear"); # endif # endif // Clear mappings, abbreviations, breakpoints. do_cmdline_cmd((char_u *)"lmapclear"); do_cmdline_cmd((char_u *)"xmapclear"); do_cmdline_cmd((char_u *)"mapclear"); do_cmdline_cmd((char_u *)"mapclear!"); do_cmdline_cmd((char_u *)"abclear"); # if defined(FEAT_EVAL) do_cmdline_cmd((char_u *)"breakdel *"); # endif # if defined(FEAT_PROFILE) do_cmdline_cmd((char_u *)"profdel *"); # endif # if defined(FEAT_KEYMAP) do_cmdline_cmd((char_u *)"set keymap="); # endif } free_titles(); free_findfile(); // Obviously named calls. free_all_autocmds(); clear_termcodes(); free_all_marks(); alist_clear(&global_alist); free_homedir(); free_users(); free_search_patterns(); free_old_sub(); free_last_insert(); free_insexpand_stuff(); free_prev_shellcmd(); free_regexp_stuff(); free_tag_stuff(); free_xim_stuff(); free_cd_dir(); # ifdef FEAT_SIGNS free_signs(); # endif # ifdef FEAT_EVAL set_expr_line(NULL, NULL); # endif # ifdef FEAT_DIFF if (curtab != NULL) diff_clear(curtab); # endif clear_sb_text(TRUE); // free any scrollback text // Free some global vars. free_username(); # ifdef FEAT_CLIPBOARD vim_regfree(clip_exclude_prog); # endif vim_free(last_cmdline); vim_free(new_last_cmdline); set_keep_msg(NULL, 0); // Clear cmdline history. p_hi = 0; init_history(); # ifdef FEAT_PROP_POPUP clear_global_prop_types(); # endif # ifdef FEAT_QUICKFIX { win_T *win; tabpage_T *tab; qf_free_all(NULL); // Free all location lists FOR_ALL_TAB_WINDOWS(tab, win) qf_free_all(win); } # endif // Close all script inputs. close_all_scripts(); if (curwin != NULL) // Destroy all windows. Must come before freeing buffers. win_free_all(); // Free all option values. Must come after closing windows. free_all_options(); // Free all buffers. Reset 'autochdir' to avoid accessing things that // were freed already. # ifdef FEAT_AUTOCHDIR p_acd = FALSE; # endif for (buf = firstbuf; buf != NULL; ) { bufref_T bufref; set_bufref(&bufref, buf); nextbuf = buf->b_next; close_buffer(NULL, buf, DOBUF_WIPE, FALSE, FALSE); if (bufref_valid(&bufref)) buf = nextbuf; // didn't work, try next one else buf = firstbuf; } # ifdef FEAT_ARABIC free_arshape_buf(); # endif // Clear registers. clear_registers(); ResetRedobuff(); ResetRedobuff(); # if defined(FEAT_CLIENTSERVER) && defined(FEAT_X11) vim_free(serverDelayedStartName); # endif // highlight info free_highlight(); reset_last_sourcing(); if (first_tabpage != NULL) { free_tabpage(first_tabpage); first_tabpage = NULL; } # ifdef UNIX // Machine-specific free. mch_free_mem(); # endif // message history for (;;) if (delete_first_msg() == FAIL) break; # ifdef FEAT_JOB_CHANNEL channel_free_all(); # endif # ifdef FEAT_TIMERS timer_free_all(); # endif # ifdef FEAT_EVAL // must be after channel_free_all() with unrefs partials eval_clear(); # endif # ifdef FEAT_JOB_CHANNEL // must be after eval_clear() with unrefs jobs job_free_all(); # endif free_termoptions(); free_cur_term(); // screenlines (can't display anything now!) free_screenlines(); # if defined(FEAT_SOUND) sound_free(); # endif # if defined(USE_XSMP) xsmp_close(); # endif # ifdef FEAT_GUI_GTK gui_mch_free_all(); # endif # ifdef FEAT_TCL vim_tcl_finalize(); # endif clear_hl_tables(); vim_free(IObuff); vim_free(NameBuff); # ifdef FEAT_QUICKFIX check_quickfix_busy(); # endif # ifdef FEAT_EVAL free_resub_eval_result(); # endif } #endif /* * Copy "p[len]" into allocated memory, ignoring NUL characters. * Returns NULL when out of memory. */ char_u * vim_memsave(char_u *p, size_t len) { char_u *ret = alloc(len); if (ret != NULL) mch_memmove(ret, p, len); return ret; } /* * Replacement for free() that ignores NULL pointers. * Also skip free() when exiting for sure, this helps when we caught a deadly * signal that was caused by a crash in free(). * If you want to set NULL after calling this function, you should use * VIM_CLEAR() instead. */ void vim_free(void *x) { if (x != NULL && !really_exiting) { #ifdef MEM_PROFILE mem_pre_free(&x); #endif free(x); } } /************************************************************************ * Functions for handling growing arrays. */ /* * Clear an allocated growing array. */ void ga_clear(garray_T *gap) { vim_free(gap->ga_data); ga_init(gap); } /* * Clear a growing array that contains a list of strings. */ void ga_clear_strings(garray_T *gap) { int i; if (gap->ga_data != NULL) for (i = 0; i < gap->ga_len; ++i) vim_free(((char_u **)(gap->ga_data))[i]); ga_clear(gap); } #if defined(FEAT_EVAL) || defined(PROTO) /* * Copy a growing array that contains a list of strings. */ int ga_copy_strings(garray_T *from, garray_T *to) { int i; ga_init2(to, sizeof(char_u *), 1); if (ga_grow(to, from->ga_len) == FAIL) return FAIL; for (i = 0; i < from->ga_len; ++i) { char_u *orig = ((char_u **)from->ga_data)[i]; char_u *copy; if (orig == NULL) copy = NULL; else { copy = vim_strsave(orig); if (copy == NULL) { to->ga_len = i; ga_clear_strings(to); return FAIL; } } ((char_u **)to->ga_data)[i] = copy; } to->ga_len = from->ga_len; return OK; } #endif /* * Initialize a growing array. Don't forget to set ga_itemsize and * ga_growsize! Or use ga_init2(). */ void ga_init(garray_T *gap) { gap->ga_data = NULL; gap->ga_maxlen = 0; gap->ga_len = 0; } void ga_init2(garray_T *gap, size_t itemsize, int growsize) { ga_init(gap); gap->ga_itemsize = (int)itemsize; gap->ga_growsize = growsize; } /* * Make room in growing array "gap" for at least "n" items. * Return FAIL for failure, OK otherwise. */ int ga_grow(garray_T *gap, int n) { if (gap->ga_maxlen - gap->ga_len < n) return ga_grow_inner(gap, n); return OK; } /* * Same as ga_grow() but uses an allocation id for testing. */ int ga_grow_id(garray_T *gap, int n, alloc_id_T id UNUSED) { #ifdef FEAT_EVAL if (alloc_fail_id == id && alloc_does_fail(sizeof(list_T))) return FAIL; #endif return ga_grow(gap, n); } int ga_grow_inner(garray_T *gap, int n) { size_t old_len; size_t new_len; char_u *pp; if (n < gap->ga_growsize) n = gap->ga_growsize; // A linear growth is very inefficient when the array grows big. This // is a compromise between allocating memory that won't be used and too // many copy operations. A factor of 1.5 seems reasonable. if (n < gap->ga_len / 2) n = gap->ga_len / 2; new_len = (size_t)gap->ga_itemsize * (gap->ga_len + n); pp = vim_realloc(gap->ga_data, new_len); if (pp == NULL) return FAIL; old_len = (size_t)gap->ga_itemsize * gap->ga_maxlen; vim_memset(pp + old_len, 0, new_len - old_len); gap->ga_maxlen = gap->ga_len + n; gap->ga_data = pp; return OK; } /* * For a growing array that contains a list of strings: concatenate all the * strings with a separating "sep". * Returns NULL when out of memory. */ char_u * ga_concat_strings(garray_T *gap, char *sep) { int i; int len = 0; int sep_len = (int)STRLEN(sep); char_u *s; char_u *p; for (i = 0; i < gap->ga_len; ++i) len += (int)STRLEN(((char_u **)(gap->ga_data))[i]) + sep_len; s = alloc(len + 1); if (s == NULL) return NULL; *s = NUL; p = s; for (i = 0; i < gap->ga_len; ++i) { if (p != s) { STRCPY(p, sep); p += sep_len; } STRCPY(p, ((char_u **)(gap->ga_data))[i]); p += STRLEN(p); } return s; } /* * Make a copy of string "p" and add it to "gap". * When out of memory nothing changes and FAIL is returned. */ int ga_copy_string(garray_T *gap, char_u *p) { char_u *cp = vim_strsave(p); if (cp == NULL) return FAIL; if (ga_grow(gap, 1) == FAIL) { vim_free(cp); return FAIL; } ((char_u **)(gap->ga_data))[gap->ga_len++] = cp; return OK; } /* * Add string "p" to "gap". * When out of memory "p" is freed and FAIL is returned. */ int ga_add_string(garray_T *gap, char_u *p) { if (ga_grow(gap, 1) == FAIL) return FAIL; ((char_u **)(gap->ga_data))[gap->ga_len++] = p; return OK; } /* * Concatenate a string to a growarray which contains bytes. * When "s" is NULL memory allocation fails does not do anything. * Note: Does NOT copy the NUL at the end! */ void ga_concat(garray_T *gap, char_u *s) { int len; if (s == NULL || *s == NUL) return; len = (int)STRLEN(s); if (ga_grow(gap, len) == OK) { mch_memmove((char *)gap->ga_data + gap->ga_len, s, (size_t)len); gap->ga_len += len; } } /* * Concatenate 'len' bytes from string 's' to a growarray. * When "s" is NULL does not do anything. */ void ga_concat_len(garray_T *gap, char_u *s, size_t len) { if (s == NULL || *s == NUL || len == 0) return; if (ga_grow(gap, (int)len) == OK) { mch_memmove((char *)gap->ga_data + gap->ga_len, s, len); gap->ga_len += (int)len; } } /* * Append one byte to a growarray which contains bytes. */ int ga_append(garray_T *gap, int c) { if (ga_grow(gap, 1) == FAIL) return FAIL; *((char *)gap->ga_data + gap->ga_len) = c; ++gap->ga_len; return OK; } #if (defined(UNIX) && !defined(USE_SYSTEM)) || defined(MSWIN) \ || defined(PROTO) /* * Append the text in "gap" below the cursor line and clear "gap". */ void append_ga_line(garray_T *gap) { // Remove trailing CR. if (gap->ga_len > 0 && !curbuf->b_p_bin && ((char_u *)gap->ga_data)[gap->ga_len - 1] == CAR) --gap->ga_len; ga_append(gap, NUL); ml_append(curwin->w_cursor.lnum++, gap->ga_data, 0, FALSE); gap->ga_len = 0; } #endif