Mercurial > vim
view src/regexp.c @ 33802:b857615e5d42 v9.0.2117
patch 9.0.2117: [security] use-after-free in qf_free_items
Commit: https://github.com/vim/vim/commit/567cae2630a51efddc07eacff3b38a295e1f5671
Author: Christian Brabandt <cb@256bit.org>
Date: Sun Nov 19 16:19:27 2023 +0100
patch 9.0.2117: [security] use-after-free in qf_free_items
Problem: [security] use-after-free in qf_free_items
Solution: only access qfpnext, if it hasn't been freed
Coverity discovered a possible use-after-free in qf_free_items. When
freeing the qfline items, we may access freed memory, when qfp ==
qfpnext.
So only access qfpnext, when it hasn't been freed.
Signed-off-by: Christian Brabandt <cb@256bit.org>
author | Christian Brabandt <cb@256bit.org> |
---|---|
date | Tue, 21 Nov 2023 20:15:05 +0100 |
parents | 0943c2a880cc |
children | 90063f44c99a |
line wrap: on
line source
/* vi:set ts=8 sts=4 sw=4 noet: * * Handling of regular expressions: vim_regcomp(), vim_regexec(), vim_regsub() */ // By default: do not create debugging logs or files related to regular // expressions, even when compiling with -DDEBUG. // Uncomment the second line to get the regexp debugging. #undef DEBUG // #define DEBUG #include "vim.h" #ifdef DEBUG // show/save debugging data when BT engine is used # define BT_REGEXP_DUMP // save the debugging data to a file instead of displaying it # define BT_REGEXP_LOG # define BT_REGEXP_DEBUG_LOG # define BT_REGEXP_DEBUG_LOG_NAME "bt_regexp_debug.log" #endif #ifdef FEAT_RELTIME static sig_atomic_t dummy_timeout_flag = 0; static volatile sig_atomic_t *timeout_flag = &dummy_timeout_flag; #endif /* * Magic characters have a special meaning, they don't match literally. * Magic characters are negative. This separates them from literal characters * (possibly multi-byte). Only ASCII characters can be Magic. */ #define Magic(x) ((int)(x) - 256) #define un_Magic(x) ((x) + 256) #define is_Magic(x) ((x) < 0) static int no_Magic(int x) { if (is_Magic(x)) return un_Magic(x); return x; } static int toggle_Magic(int x) { if (is_Magic(x)) return un_Magic(x); return Magic(x); } #ifdef FEAT_RELTIME static int timeout_nesting = 0; /* * Start a timer that will cause the regexp to abort after "msec". * This doesn't work well recursively. In case it happens anyway, the first * set timeout will prevail, nested ones are ignored. * The caller must make sure there is a matching disable_regexp_timeout() call! */ void init_regexp_timeout(long msec) { if (timeout_nesting == 0) timeout_flag = start_timeout(msec); ++timeout_nesting; } void disable_regexp_timeout(void) { if (timeout_nesting == 0) iemsg("disable_regexp_timeout() called without active timer"); else if (--timeout_nesting == 0) { stop_timeout(); timeout_flag = &dummy_timeout_flag; } } #endif #if defined(FEAT_EVAL) || defined(PROTO) # ifdef FEAT_RELTIME static sig_atomic_t *saved_timeout_flag; # endif /* * Used at the debug prompt: disable the timeout so that expression evaluation * can used patterns. * Must be followed by calling restore_timeout_for_debugging(). */ void save_timeout_for_debugging(void) { # ifdef FEAT_RELTIME saved_timeout_flag = (sig_atomic_t *)timeout_flag; timeout_flag = &dummy_timeout_flag; # endif } void restore_timeout_for_debugging(void) { # ifdef FEAT_RELTIME timeout_flag = saved_timeout_flag; # endif } #endif /* * The first byte of the BT regexp internal "program" is actually this magic * number; the start node begins in the second byte. It's used to catch the * most severe mutilation of the program by the caller. */ #define REGMAGIC 0234 /* * Utility definitions. */ #define UCHARAT(p) ((int)*(char_u *)(p)) // Used for an error (down from) vim_regcomp(): give the error message, set // rc_did_emsg and return NULL #define EMSG_RET_NULL(m) return (emsg((m)), rc_did_emsg = TRUE, (void *)NULL) #define IEMSG_RET_NULL(m) return (iemsg((m)), rc_did_emsg = TRUE, (void *)NULL) #define EMSG_RET_FAIL(m) return (emsg((m)), rc_did_emsg = TRUE, FAIL) #define EMSG2_RET_NULL(m, c) return (semsg((const char *)(m), (c) ? "" : "\\"), rc_did_emsg = TRUE, (void *)NULL) #define EMSG3_RET_NULL(m, c, a) return (semsg((const char *)(m), (c) ? "" : "\\", (a)), rc_did_emsg = TRUE, (void *)NULL) #define EMSG2_RET_FAIL(m, c) return (semsg((const char *)(m), (c) ? "" : "\\"), rc_did_emsg = TRUE, FAIL) #define EMSG_ONE_RET_NULL EMSG2_RET_NULL(_(e_invalid_item_in_str_brackets), reg_magic == MAGIC_ALL) #define MAX_LIMIT (32767L << 16L) #define NOT_MULTI 0 #define MULTI_ONE 1 #define MULTI_MULT 2 // return values for regmatch() #define RA_FAIL 1 // something failed, abort #define RA_CONT 2 // continue in inner loop #define RA_BREAK 3 // break inner loop #define RA_MATCH 4 // successful match #define RA_NOMATCH 5 // didn't match /* * Return NOT_MULTI if c is not a "multi" operator. * Return MULTI_ONE if c is a single "multi" operator. * Return MULTI_MULT if c is a multi "multi" operator. */ static int re_multi_type(int c) { if (c == Magic('@') || c == Magic('=') || c == Magic('?')) return MULTI_ONE; if (c == Magic('*') || c == Magic('+') || c == Magic('{')) return MULTI_MULT; return NOT_MULTI; } static char_u *reg_prev_sub = NULL; /* * REGEXP_INRANGE contains all characters which are always special in a [] * range after '\'. * REGEXP_ABBR contains all characters which act as abbreviations after '\'. * These are: * \n - New line (NL). * \r - Carriage Return (CR). * \t - Tab (TAB). * \e - Escape (ESC). * \b - Backspace (Ctrl_H). * \d - Character code in decimal, eg \d123 * \o - Character code in octal, eg \o80 * \x - Character code in hex, eg \x4a * \u - Multibyte character code, eg \u20ac * \U - Long multibyte character code, eg \U12345678 */ static char_u REGEXP_INRANGE[] = "]^-n\\"; static char_u REGEXP_ABBR[] = "nrtebdoxuU"; /* * Translate '\x' to its control character, except "\n", which is Magic. */ static int backslash_trans(int c) { switch (c) { case 'r': return CAR; case 't': return TAB; case 'e': return ESC; case 'b': return BS; } return c; } /* * Check for a character class name "[:name:]". "pp" points to the '['. * Returns one of the CLASS_ items. CLASS_NONE means that no item was * recognized. Otherwise "pp" is advanced to after the item. */ static int get_char_class(char_u **pp) { static const char *(class_names[]) = { "alnum:]", #define CLASS_ALNUM 0 "alpha:]", #define CLASS_ALPHA 1 "blank:]", #define CLASS_BLANK 2 "cntrl:]", #define CLASS_CNTRL 3 "digit:]", #define CLASS_DIGIT 4 "graph:]", #define CLASS_GRAPH 5 "lower:]", #define CLASS_LOWER 6 "print:]", #define CLASS_PRINT 7 "punct:]", #define CLASS_PUNCT 8 "space:]", #define CLASS_SPACE 9 "upper:]", #define CLASS_UPPER 10 "xdigit:]", #define CLASS_XDIGIT 11 "tab:]", #define CLASS_TAB 12 "return:]", #define CLASS_RETURN 13 "backspace:]", #define CLASS_BACKSPACE 14 "escape:]", #define CLASS_ESCAPE 15 "ident:]", #define CLASS_IDENT 16 "keyword:]", #define CLASS_KEYWORD 17 "fname:]", #define CLASS_FNAME 18 }; #define CLASS_NONE 99 int i; if ((*pp)[1] == ':') { for (i = 0; i < (int)ARRAY_LENGTH(class_names); ++i) if (STRNCMP(*pp + 2, class_names[i], STRLEN(class_names[i])) == 0) { *pp += STRLEN(class_names[i]) + 2; return i; } } return CLASS_NONE; } /* * Specific version of character class functions. * Using a table to keep this fast. */ static short class_tab[256]; #define RI_DIGIT 0x01 #define RI_HEX 0x02 #define RI_OCTAL 0x04 #define RI_WORD 0x08 #define RI_HEAD 0x10 #define RI_ALPHA 0x20 #define RI_LOWER 0x40 #define RI_UPPER 0x80 #define RI_WHITE 0x100 static void init_class_tab(void) { int i; static int done = FALSE; if (done) return; for (i = 0; i < 256; ++i) { if (i >= '0' && i <= '7') class_tab[i] = RI_DIGIT + RI_HEX + RI_OCTAL + RI_WORD; else if (i >= '8' && i <= '9') class_tab[i] = RI_DIGIT + RI_HEX + RI_WORD; else if (i >= 'a' && i <= 'f') class_tab[i] = RI_HEX + RI_WORD + RI_HEAD + RI_ALPHA + RI_LOWER; else if (i >= 'g' && i <= 'z') class_tab[i] = RI_WORD + RI_HEAD + RI_ALPHA + RI_LOWER; else if (i >= 'A' && i <= 'F') class_tab[i] = RI_HEX + RI_WORD + RI_HEAD + RI_ALPHA + RI_UPPER; else if (i >= 'G' && i <= 'Z') class_tab[i] = RI_WORD + RI_HEAD + RI_ALPHA + RI_UPPER; else if (i == '_') class_tab[i] = RI_WORD + RI_HEAD; else class_tab[i] = 0; } class_tab[' '] |= RI_WHITE; class_tab['\t'] |= RI_WHITE; done = TRUE; } #define ri_digit(c) ((c) < 0x100 && (class_tab[c] & RI_DIGIT)) #define ri_hex(c) ((c) < 0x100 && (class_tab[c] & RI_HEX)) #define ri_octal(c) ((c) < 0x100 && (class_tab[c] & RI_OCTAL)) #define ri_word(c) ((c) < 0x100 && (class_tab[c] & RI_WORD)) #define ri_head(c) ((c) < 0x100 && (class_tab[c] & RI_HEAD)) #define ri_alpha(c) ((c) < 0x100 && (class_tab[c] & RI_ALPHA)) #define ri_lower(c) ((c) < 0x100 && (class_tab[c] & RI_LOWER)) #define ri_upper(c) ((c) < 0x100 && (class_tab[c] & RI_UPPER)) #define ri_white(c) ((c) < 0x100 && (class_tab[c] & RI_WHITE)) // flags for regflags #define RF_ICASE 1 // ignore case #define RF_NOICASE 2 // don't ignore case #define RF_HASNL 4 // can match a NL #define RF_ICOMBINE 8 // ignore combining characters #define RF_LOOKBH 16 // uses "\@<=" or "\@<!" /* * Global work variables for vim_regcomp(). */ static char_u *regparse; // Input-scan pointer. static int regnpar; // () count. static int wants_nfa; // regex should use NFA engine #ifdef FEAT_SYN_HL static int regnzpar; // \z() count. static int re_has_z; // \z item detected #endif static unsigned regflags; // RF_ flags for prog #if defined(FEAT_SYN_HL) || defined(PROTO) static int had_eol; // TRUE when EOL found by vim_regcomp() #endif static magic_T reg_magic; // magicness of the pattern static int reg_string; // matching with a string instead of a buffer // line static int reg_strict; // "[abc" is illegal /* * META contains all characters that may be magic, except '^' and '$'. */ // META[] is used often enough to justify turning it into a table. static char_u META_flags[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // % & ( ) * + . 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, // 1 2 3 4 5 6 7 8 9 < = > ? 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, // @ A C D F H I K L M O 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, // P S U V W X Z [ _ 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, // a c d f h i k l m n o 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, // p s u v w x z { | ~ 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1 }; static int curchr; // currently parsed character // Previous character. Note: prevchr is sometimes -1 when we are not at the // start, eg in /[ ^I]^ the pattern was never found even if it existed, // because ^ was taken to be magic -- webb static int prevchr; static int prevprevchr; // previous-previous character static int nextchr; // used for ungetchr() // arguments for reg() #define REG_NOPAREN 0 // toplevel reg() #define REG_PAREN 1 // \(\) #define REG_ZPAREN 2 // \z(\) #define REG_NPAREN 3 // \%(\) typedef struct { char_u *regparse; int prevchr_len; int curchr; int prevchr; int prevprevchr; int nextchr; int at_start; int prev_at_start; int regnpar; } parse_state_T; static void initchr(char_u *); static int getchr(void); static void skipchr_keepstart(void); static int peekchr(void); static void skipchr(void); static void ungetchr(void); static long gethexchrs(int maxinputlen); static long getoctchrs(void); static long getdecchrs(void); static int coll_get_char(void); static int prog_magic_wrong(void); static int cstrncmp(char_u *s1, char_u *s2, int *n); static char_u *cstrchr(char_u *, int); static int re_mult_next(char *what); static int reg_iswordc(int); #ifdef FEAT_EVAL static void report_re_switch(char_u *pat); #endif static regengine_T bt_regengine; static regengine_T nfa_regengine; /* * Return TRUE if compiled regular expression "prog" can match a line break. */ int re_multiline(regprog_T *prog) { return (prog->regflags & RF_HASNL); } /* * Check for an equivalence class name "[=a=]". "pp" points to the '['. * Returns a character representing the class. Zero means that no item was * recognized. Otherwise "pp" is advanced to after the item. */ static int get_equi_class(char_u **pp) { int c; int l = 1; char_u *p = *pp; if (p[1] == '=' && p[2] != NUL) { if (has_mbyte) l = (*mb_ptr2len)(p + 2); if (p[l + 2] == '=' && p[l + 3] == ']') { if (has_mbyte) c = mb_ptr2char(p + 2); else c = p[2]; *pp += l + 4; return c; } } return 0; } /* * Check for a collating element "[.a.]". "pp" points to the '['. * Returns a character. Zero means that no item was recognized. Otherwise * "pp" is advanced to after the item. * Currently only single characters are recognized! */ static int get_coll_element(char_u **pp) { int c; int l = 1; char_u *p = *pp; if (p[0] != NUL && p[1] == '.' && p[2] != NUL) { if (has_mbyte) l = (*mb_ptr2len)(p + 2); if (p[l + 2] == '.' && p[l + 3] == ']') { if (has_mbyte) c = mb_ptr2char(p + 2); else c = p[2]; *pp += l + 4; return c; } } return 0; } static int reg_cpo_lit; // 'cpoptions' contains 'l' flag static int reg_cpo_bsl; // 'cpoptions' contains '\' flag static void get_cpo_flags(void) { reg_cpo_lit = vim_strchr(p_cpo, CPO_LITERAL) != NULL; reg_cpo_bsl = vim_strchr(p_cpo, CPO_BACKSL) != NULL; } /* * Skip over a "[]" range. * "p" must point to the character after the '['. * The returned pointer is on the matching ']', or the terminating NUL. */ static char_u * skip_anyof(char_u *p) { int l; if (*p == '^') // Complement of range. ++p; if (*p == ']' || *p == '-') ++p; while (*p != NUL && *p != ']') { if (has_mbyte && (l = (*mb_ptr2len)(p)) > 1) p += l; else if (*p == '-') { ++p; if (*p != ']' && *p != NUL) MB_PTR_ADV(p); } else if (*p == '\\' && !reg_cpo_bsl && (vim_strchr(REGEXP_INRANGE, p[1]) != NULL || (!reg_cpo_lit && vim_strchr(REGEXP_ABBR, p[1]) != NULL))) p += 2; else if (*p == '[') { if (get_char_class(&p) == CLASS_NONE && get_equi_class(&p) == 0 && get_coll_element(&p) == 0 && *p != NUL) ++p; // it is not a class name and not NUL } else ++p; } return p; } /* * Skip past regular expression. * Stop at end of "startp" or where "delim" is found ('/', '?', etc). * Take care of characters with a backslash in front of it. * Skip strings inside [ and ]. */ char_u * skip_regexp( char_u *startp, int delim, int magic) { return skip_regexp_ex(startp, delim, magic, NULL, NULL, NULL); } /* * Call skip_regexp() and when the delimiter does not match give an error and * return NULL. */ char_u * skip_regexp_err( char_u *startp, int delim, int magic) { char_u *p = skip_regexp(startp, delim, magic); if (*p != delim) { semsg(_(e_missing_delimiter_after_search_pattern_str), startp); return NULL; } return p; } /* * skip_regexp() with extra arguments: * When "newp" is not NULL and "dirc" is '?', make an allocated copy of the * expression and change "\?" to "?". If "*newp" is not NULL the expression * is changed in-place. * If a "\?" is changed to "?" then "dropped" is incremented, unless NULL. * If "magic_val" is not NULL, returns the effective magicness of the pattern */ char_u * skip_regexp_ex( char_u *startp, int dirc, int magic, char_u **newp, int *dropped, magic_T *magic_val) { magic_T mymagic; char_u *p = startp; if (magic) mymagic = MAGIC_ON; else mymagic = MAGIC_OFF; get_cpo_flags(); for (; p[0] != NUL; MB_PTR_ADV(p)) { if (p[0] == dirc) // found end of regexp break; if ((p[0] == '[' && mymagic >= MAGIC_ON) || (p[0] == '\\' && p[1] == '[' && mymagic <= MAGIC_OFF)) { p = skip_anyof(p + 1); if (p[0] == NUL) break; } else if (p[0] == '\\' && p[1] != NUL) { if (dirc == '?' && newp != NULL && p[1] == '?') { // change "\?" to "?", make a copy first. if (*newp == NULL) { *newp = vim_strsave(startp); if (*newp != NULL) p = *newp + (p - startp); } if (dropped != NULL) ++*dropped; if (*newp != NULL) STRMOVE(p, p + 1); else ++p; } else ++p; // skip next character if (*p == 'v') mymagic = MAGIC_ALL; else if (*p == 'V') mymagic = MAGIC_NONE; } } if (magic_val != NULL) *magic_val = mymagic; return p; } /* * Functions for getting characters from the regexp input. */ static int prevchr_len; // byte length of previous char static int at_start; // True when on the first character static int prev_at_start; // True when on the second character /* * Start parsing at "str". */ static void initchr(char_u *str) { regparse = str; prevchr_len = 0; curchr = prevprevchr = prevchr = nextchr = -1; at_start = TRUE; prev_at_start = FALSE; } /* * Save the current parse state, so that it can be restored and parsing * starts in the same state again. */ static void save_parse_state(parse_state_T *ps) { ps->regparse = regparse; ps->prevchr_len = prevchr_len; ps->curchr = curchr; ps->prevchr = prevchr; ps->prevprevchr = prevprevchr; ps->nextchr = nextchr; ps->at_start = at_start; ps->prev_at_start = prev_at_start; ps->regnpar = regnpar; } /* * Restore a previously saved parse state. */ static void restore_parse_state(parse_state_T *ps) { regparse = ps->regparse; prevchr_len = ps->prevchr_len; curchr = ps->curchr; prevchr = ps->prevchr; prevprevchr = ps->prevprevchr; nextchr = ps->nextchr; at_start = ps->at_start; prev_at_start = ps->prev_at_start; regnpar = ps->regnpar; } /* * Get the next character without advancing. */ static int peekchr(void) { static int after_slash = FALSE; if (curchr != -1) return curchr; switch (curchr = regparse[0]) { case '.': case '[': case '~': // magic when 'magic' is on if (reg_magic >= MAGIC_ON) curchr = Magic(curchr); break; case '(': case ')': case '{': case '%': case '+': case '=': case '?': case '@': case '!': case '&': case '|': case '<': case '>': case '#': // future ext. case '"': // future ext. case '\'': // future ext. case ',': // future ext. case '-': // future ext. case ':': // future ext. case ';': // future ext. case '`': // future ext. case '/': // Can't be used in / command // magic only after "\v" if (reg_magic == MAGIC_ALL) curchr = Magic(curchr); break; case '*': // * is not magic as the very first character, eg "?*ptr", when // after '^', eg "/^*ptr" and when after "\(", "\|", "\&". But // "\(\*" is not magic, thus must be magic if "after_slash" if (reg_magic >= MAGIC_ON && !at_start && !(prev_at_start && prevchr == Magic('^')) && (after_slash || (prevchr != Magic('(') && prevchr != Magic('&') && prevchr != Magic('|')))) curchr = Magic('*'); break; case '^': // '^' is only magic as the very first character and if it's after // "\(", "\|", "\&' or "\n" if (reg_magic >= MAGIC_OFF && (at_start || reg_magic == MAGIC_ALL || prevchr == Magic('(') || prevchr == Magic('|') || prevchr == Magic('&') || prevchr == Magic('n') || (no_Magic(prevchr) == '(' && prevprevchr == Magic('%')))) { curchr = Magic('^'); at_start = TRUE; prev_at_start = FALSE; } break; case '$': // '$' is only magic as the very last char and if it's in front of // either "\|", "\)", "\&", or "\n" if (reg_magic >= MAGIC_OFF) { char_u *p = regparse + 1; int is_magic_all = (reg_magic == MAGIC_ALL); // ignore \c \C \m \M \v \V and \Z after '$' while (p[0] == '\\' && (p[1] == 'c' || p[1] == 'C' || p[1] == 'm' || p[1] == 'M' || p[1] == 'v' || p[1] == 'V' || p[1] == 'Z')) { if (p[1] == 'v') is_magic_all = TRUE; else if (p[1] == 'm' || p[1] == 'M' || p[1] == 'V') is_magic_all = FALSE; p += 2; } if (p[0] == NUL || (p[0] == '\\' && (p[1] == '|' || p[1] == '&' || p[1] == ')' || p[1] == 'n')) || (is_magic_all && (p[0] == '|' || p[0] == '&' || p[0] == ')')) || reg_magic == MAGIC_ALL) curchr = Magic('$'); } break; case '\\': { int c = regparse[1]; if (c == NUL) curchr = '\\'; // trailing '\' else if (c <= '~' && META_flags[c]) { /* * META contains everything that may be magic sometimes, * except ^ and $ ("\^" and "\$" are only magic after * "\V"). We now fetch the next character and toggle its * magicness. Therefore, \ is so meta-magic that it is * not in META. */ curchr = -1; prev_at_start = at_start; at_start = FALSE; // be able to say "/\*ptr" ++regparse; ++after_slash; peekchr(); --regparse; --after_slash; curchr = toggle_Magic(curchr); } else if (vim_strchr(REGEXP_ABBR, c)) { /* * Handle abbreviations, like "\t" for TAB -- webb */ curchr = backslash_trans(c); } else if (reg_magic == MAGIC_NONE && (c == '$' || c == '^')) curchr = toggle_Magic(c); else { /* * Next character can never be (made) magic? * Then backslashing it won't do anything. */ if (has_mbyte) curchr = (*mb_ptr2char)(regparse + 1); else curchr = c; } break; } default: if (has_mbyte) curchr = (*mb_ptr2char)(regparse); } return curchr; } /* * Eat one lexed character. Do this in a way that we can undo it. */ static void skipchr(void) { // peekchr() eats a backslash, do the same here if (*regparse == '\\') prevchr_len = 1; else prevchr_len = 0; if (regparse[prevchr_len] != NUL) { if (enc_utf8) // exclude composing chars that mb_ptr2len does include prevchr_len += utf_ptr2len(regparse + prevchr_len); else if (has_mbyte) prevchr_len += (*mb_ptr2len)(regparse + prevchr_len); else ++prevchr_len; } regparse += prevchr_len; prev_at_start = at_start; at_start = FALSE; prevprevchr = prevchr; prevchr = curchr; curchr = nextchr; // use previously unget char, or -1 nextchr = -1; } /* * Skip a character while keeping the value of prev_at_start for at_start. * prevchr and prevprevchr are also kept. */ static void skipchr_keepstart(void) { int as = prev_at_start; int pr = prevchr; int prpr = prevprevchr; skipchr(); at_start = as; prevchr = pr; prevprevchr = prpr; } /* * Get the next character from the pattern. We know about magic and such, so * therefore we need a lexical analyzer. */ static int getchr(void) { int chr = peekchr(); skipchr(); return chr; } /* * put character back. Works only once! */ static void ungetchr(void) { nextchr = curchr; curchr = prevchr; prevchr = prevprevchr; at_start = prev_at_start; prev_at_start = FALSE; // Backup regparse, so that it's at the same position as before the // getchr(). regparse -= prevchr_len; } /* * Get and return the value of the hex string at the current position. * Return -1 if there is no valid hex number. * The position is updated: * blahblah\%x20asdf * before-^ ^-after * The parameter controls the maximum number of input characters. This will be * 2 when reading a \%x20 sequence and 4 when reading a \%u20AC sequence. */ static long gethexchrs(int maxinputlen) { long_u nr = 0; int c; int i; for (i = 0; i < maxinputlen; ++i) { c = regparse[0]; if (!vim_isxdigit(c)) break; nr <<= 4; nr |= hex2nr(c); ++regparse; } if (i == 0) return -1; return (long)nr; } /* * Get and return the value of the decimal string immediately after the * current position. Return -1 for invalid. Consumes all digits. */ static long getdecchrs(void) { long_u nr = 0; int c; int i; for (i = 0; ; ++i) { c = regparse[0]; if (c < '0' || c > '9') break; nr *= 10; nr += c - '0'; ++regparse; curchr = -1; // no longer valid } if (i == 0) return -1; return (long)nr; } /* * get and return the value of the octal string immediately after the current * position. Return -1 for invalid, or 0-255 for valid. Smart enough to handle * numbers > 377 correctly (for example, 400 is treated as 40) and doesn't * treat 8 or 9 as recognised characters. Position is updated: * blahblah\%o210asdf * before-^ ^-after */ static long getoctchrs(void) { long_u nr = 0; int c; int i; for (i = 0; i < 3 && nr < 040; ++i) { c = regparse[0]; if (c < '0' || c > '7') break; nr <<= 3; nr |= hex2nr(c); ++regparse; } if (i == 0) return -1; return (long)nr; } /* * read_limits - Read two integers to be taken as a minimum and maximum. * If the first character is '-', then the range is reversed. * Should end with 'end'. If minval is missing, zero is default, if maxval is * missing, a very big number is the default. */ static int read_limits(long *minval, long *maxval) { int reverse = FALSE; char_u *first_char; long tmp; if (*regparse == '-') { // Starts with '-', so reverse the range later regparse++; reverse = TRUE; } first_char = regparse; *minval = getdigits(®parse); if (*regparse == ',') // There is a comma { if (vim_isdigit(*++regparse)) *maxval = getdigits(®parse); else *maxval = MAX_LIMIT; } else if (VIM_ISDIGIT(*first_char)) *maxval = *minval; // It was \{n} or \{-n} else *maxval = MAX_LIMIT; // It was \{} or \{-} if (*regparse == '\\') regparse++; // Allow either \{...} or \{...\} if (*regparse != '}') EMSG2_RET_FAIL(_(e_syntax_error_in_str_curlies), reg_magic == MAGIC_ALL); /* * Reverse the range if there was a '-', or make sure it is in the right * order otherwise. */ if ((!reverse && *minval > *maxval) || (reverse && *minval < *maxval)) { tmp = *minval; *minval = *maxval; *maxval = tmp; } skipchr(); // let's be friends with the lexer again return OK; } /* * vim_regexec and friends */ /* * Global work variables for vim_regexec(). */ static void cleanup_subexpr(void); #ifdef FEAT_SYN_HL static void cleanup_zsubexpr(void); #endif static int match_with_backref(linenr_T start_lnum, colnr_T start_col, linenr_T end_lnum, colnr_T end_col, int *bytelen); /* * Sometimes need to save a copy of a line. Since alloc()/free() is very * slow, we keep one allocated piece of memory and only re-allocate it when * it's too small. It's freed in bt_regexec_both() when finished. */ static char_u *reg_tofree = NULL; static unsigned reg_tofreelen; /* * Structure used to store the execution state of the regex engine. * Which ones are set depends on whether a single-line or multi-line match is * done: * single-line multi-line * reg_match ®match_T NULL * reg_mmatch NULL ®mmatch_T * reg_startp reg_match->startp <invalid> * reg_endp reg_match->endp <invalid> * reg_startpos <invalid> reg_mmatch->startpos * reg_endpos <invalid> reg_mmatch->endpos * reg_win NULL window in which to search * reg_buf curbuf buffer in which to search * reg_firstlnum <invalid> first line in which to search * reg_maxline 0 last line nr * reg_line_lbr FALSE or TRUE FALSE */ typedef struct { regmatch_T *reg_match; regmmatch_T *reg_mmatch; char_u **reg_startp; char_u **reg_endp; lpos_T *reg_startpos; lpos_T *reg_endpos; win_T *reg_win; buf_T *reg_buf; linenr_T reg_firstlnum; linenr_T reg_maxline; int reg_line_lbr; // "\n" in string is line break // The current match-position is stord in these variables: linenr_T lnum; // line number, relative to first line char_u *line; // start of current line char_u *input; // current input, points into "line" int need_clear_subexpr; // subexpressions still need to be cleared #ifdef FEAT_SYN_HL int need_clear_zsubexpr; // extmatch subexpressions still need to be // cleared #endif // Internal copy of 'ignorecase'. It is set at each call to vim_regexec(). // Normally it gets the value of "rm_ic" or "rmm_ic", but when the pattern // contains '\c' or '\C' the value is overruled. int reg_ic; // Similar to "reg_ic", but only for 'combining' characters. Set with \Z // flag in the regexp. Defaults to false, always. int reg_icombine; // Copy of "rmm_maxcol": maximum column to search for a match. Zero when // there is no maximum. colnr_T reg_maxcol; // State for the NFA engine regexec. int nfa_has_zend; // NFA regexp \ze operator encountered. int nfa_has_backref; // NFA regexp \1 .. \9 encountered. int nfa_nsubexpr; // Number of sub expressions actually being used // during execution. 1 if only the whole match // (subexpr 0) is used. // listid is global, so that it increases on recursive calls to // nfa_regmatch(), which means we don't have to clear the lastlist field of // all the states. int nfa_listid; int nfa_alt_listid; #ifdef FEAT_SYN_HL int nfa_has_zsubexpr; // NFA regexp has \z( ), set zsubexpr. #endif } regexec_T; static regexec_T rex; static int rex_in_use = FALSE; /* * Return TRUE if character 'c' is included in 'iskeyword' option for * "reg_buf" buffer. */ static int reg_iswordc(int c) { return vim_iswordc_buf(c, rex.reg_buf); } /* * Get pointer to the line "lnum", which is relative to "reg_firstlnum". */ static char_u * reg_getline(linenr_T lnum) { // when looking behind for a match/no-match lnum is negative. But we // can't go before line 1 if (rex.reg_firstlnum + lnum < 1) return NULL; if (lnum > rex.reg_maxline) // Must have matched the "\n" in the last line. return (char_u *)""; return ml_get_buf(rex.reg_buf, rex.reg_firstlnum + lnum, FALSE); } #ifdef FEAT_SYN_HL static char_u *reg_startzp[NSUBEXP]; // Workspace to mark beginning static char_u *reg_endzp[NSUBEXP]; // and end of \z(...\) matches static lpos_T reg_startzpos[NSUBEXP]; // idem, beginning pos static lpos_T reg_endzpos[NSUBEXP]; // idem, end pos #endif // TRUE if using multi-line regexp. #define REG_MULTI (rex.reg_match == NULL) #ifdef FEAT_SYN_HL /* * Create a new extmatch and mark it as referenced once. */ static reg_extmatch_T * make_extmatch(void) { reg_extmatch_T *em; em = ALLOC_CLEAR_ONE(reg_extmatch_T); if (em != NULL) em->refcnt = 1; return em; } /* * Add a reference to an extmatch. */ reg_extmatch_T * ref_extmatch(reg_extmatch_T *em) { if (em != NULL) em->refcnt++; return em; } /* * Remove a reference to an extmatch. If there are no references left, free * the info. */ void unref_extmatch(reg_extmatch_T *em) { int i; if (em != NULL && --em->refcnt <= 0) { for (i = 0; i < NSUBEXP; ++i) vim_free(em->matches[i]); vim_free(em); } } #endif /* * Get class of previous character. */ static int reg_prev_class(void) { if (rex.input > rex.line) return mb_get_class_buf(rex.input - 1 - (*mb_head_off)(rex.line, rex.input - 1), rex.reg_buf); return -1; } /* * Return TRUE if the current rex.input position matches the Visual area. */ static int reg_match_visual(void) { pos_T top, bot; linenr_T lnum; colnr_T col; win_T *wp = rex.reg_win == NULL ? curwin : rex.reg_win; int mode; colnr_T start, end; colnr_T start2, end2; colnr_T cols; colnr_T curswant; // Check if the buffer is the current buffer and not using a string. if (rex.reg_buf != curbuf || VIsual.lnum == 0 || !REG_MULTI) return FALSE; if (VIsual_active) { if (LT_POS(VIsual, wp->w_cursor)) { top = VIsual; bot = wp->w_cursor; } else { top = wp->w_cursor; bot = VIsual; } mode = VIsual_mode; curswant = wp->w_curswant; } else { if (LT_POS(curbuf->b_visual.vi_start, curbuf->b_visual.vi_end)) { top = curbuf->b_visual.vi_start; bot = curbuf->b_visual.vi_end; } else { top = curbuf->b_visual.vi_end; bot = curbuf->b_visual.vi_start; } mode = curbuf->b_visual.vi_mode; curswant = curbuf->b_visual.vi_curswant; } lnum = rex.lnum + rex.reg_firstlnum; if (lnum < top.lnum || lnum > bot.lnum) return FALSE; col = (colnr_T)(rex.input - rex.line); if (mode == 'v') { if ((lnum == top.lnum && col < top.col) || (lnum == bot.lnum && col >= bot.col + (*p_sel != 'e'))) return FALSE; } else if (mode == Ctrl_V) { getvvcol(wp, &top, &start, NULL, &end); getvvcol(wp, &bot, &start2, NULL, &end2); if (start2 < start) start = start2; if (end2 > end) end = end2; if (top.col == MAXCOL || bot.col == MAXCOL || curswant == MAXCOL) end = MAXCOL; // getvvcol() flushes rex.line, need to get it again rex.line = reg_getline(rex.lnum); rex.input = rex.line + col; cols = win_linetabsize(wp, rex.reg_firstlnum + rex.lnum, rex.line, col); if (cols < start || cols > end - (*p_sel == 'e')) return FALSE; } return TRUE; } /* * Check the regexp program for its magic number. * Return TRUE if it's wrong. */ static int prog_magic_wrong(void) { regprog_T *prog; prog = REG_MULTI ? rex.reg_mmatch->regprog : rex.reg_match->regprog; if (prog->engine == &nfa_regengine) // For NFA matcher we don't check the magic return FALSE; if (UCHARAT(((bt_regprog_T *)prog)->program) != REGMAGIC) { iemsg(e_corrupted_regexp_program); return TRUE; } return FALSE; } /* * Cleanup the subexpressions, if this wasn't done yet. * This construction is used to clear the subexpressions only when they are * used (to increase speed). */ static void cleanup_subexpr(void) { if (!rex.need_clear_subexpr) return; if (REG_MULTI) { // Use 0xff to set lnum to -1 vim_memset(rex.reg_startpos, 0xff, sizeof(lpos_T) * NSUBEXP); vim_memset(rex.reg_endpos, 0xff, sizeof(lpos_T) * NSUBEXP); } else { vim_memset(rex.reg_startp, 0, sizeof(char_u *) * NSUBEXP); vim_memset(rex.reg_endp, 0, sizeof(char_u *) * NSUBEXP); } rex.need_clear_subexpr = FALSE; } #ifdef FEAT_SYN_HL static void cleanup_zsubexpr(void) { if (!rex.need_clear_zsubexpr) return; if (REG_MULTI) { // Use 0xff to set lnum to -1 vim_memset(reg_startzpos, 0xff, sizeof(lpos_T) * NSUBEXP); vim_memset(reg_endzpos, 0xff, sizeof(lpos_T) * NSUBEXP); } else { vim_memset(reg_startzp, 0, sizeof(char_u *) * NSUBEXP); vim_memset(reg_endzp, 0, sizeof(char_u *) * NSUBEXP); } rex.need_clear_zsubexpr = FALSE; } #endif /* * Advance rex.lnum, rex.line and rex.input to the next line. */ static void reg_nextline(void) { rex.line = reg_getline(++rex.lnum); rex.input = rex.line; fast_breakcheck(); } /* * Check whether a backreference matches. * Returns RA_FAIL, RA_NOMATCH or RA_MATCH. * If "bytelen" is not NULL, it is set to the byte length of the match in the * last line. */ static int match_with_backref( linenr_T start_lnum, colnr_T start_col, linenr_T end_lnum, colnr_T end_col, int *bytelen) { linenr_T clnum = start_lnum; colnr_T ccol = start_col; int len; char_u *p; if (bytelen != NULL) *bytelen = 0; for (;;) { // Since getting one line may invalidate the other, need to make copy. // Slow! if (rex.line != reg_tofree) { len = (int)STRLEN(rex.line); if (reg_tofree == NULL || len >= (int)reg_tofreelen) { len += 50; // get some extra vim_free(reg_tofree); reg_tofree = alloc(len); if (reg_tofree == NULL) return RA_FAIL; // out of memory! reg_tofreelen = len; } STRCPY(reg_tofree, rex.line); rex.input = reg_tofree + (rex.input - rex.line); rex.line = reg_tofree; } // Get the line to compare with. p = reg_getline(clnum); if (clnum == end_lnum) len = end_col - ccol; else len = (int)STRLEN(p + ccol); if (cstrncmp(p + ccol, rex.input, &len) != 0) return RA_NOMATCH; // doesn't match if (bytelen != NULL) *bytelen += len; if (clnum == end_lnum) break; // match and at end! if (rex.lnum >= rex.reg_maxline) return RA_NOMATCH; // text too short // Advance to next line. reg_nextline(); if (bytelen != NULL) *bytelen = 0; ++clnum; ccol = 0; if (got_int) return RA_FAIL; } // found a match! Note that rex.line may now point to a copy of the line, // that should not matter. return RA_MATCH; } /* * Used in a place where no * or \+ can follow. */ static int re_mult_next(char *what) { if (re_multi_type(peekchr()) == MULTI_MULT) { semsg(_(e_nfa_regexp_cannot_repeat_str), what); rc_did_emsg = TRUE; return FAIL; } return OK; } typedef struct { int a, b, c; } decomp_T; // 0xfb20 - 0xfb4f static decomp_T decomp_table[0xfb4f-0xfb20+1] = { {0x5e2,0,0}, // 0xfb20 alt ayin {0x5d0,0,0}, // 0xfb21 alt alef {0x5d3,0,0}, // 0xfb22 alt dalet {0x5d4,0,0}, // 0xfb23 alt he {0x5db,0,0}, // 0xfb24 alt kaf {0x5dc,0,0}, // 0xfb25 alt lamed {0x5dd,0,0}, // 0xfb26 alt mem-sofit {0x5e8,0,0}, // 0xfb27 alt resh {0x5ea,0,0}, // 0xfb28 alt tav {'+', 0, 0}, // 0xfb29 alt plus {0x5e9, 0x5c1, 0}, // 0xfb2a shin+shin-dot {0x5e9, 0x5c2, 0}, // 0xfb2b shin+sin-dot {0x5e9, 0x5c1, 0x5bc}, // 0xfb2c shin+shin-dot+dagesh {0x5e9, 0x5c2, 0x5bc}, // 0xfb2d shin+sin-dot+dagesh {0x5d0, 0x5b7, 0}, // 0xfb2e alef+patah {0x5d0, 0x5b8, 0}, // 0xfb2f alef+qamats {0x5d0, 0x5b4, 0}, // 0xfb30 alef+hiriq {0x5d1, 0x5bc, 0}, // 0xfb31 bet+dagesh {0x5d2, 0x5bc, 0}, // 0xfb32 gimel+dagesh {0x5d3, 0x5bc, 0}, // 0xfb33 dalet+dagesh {0x5d4, 0x5bc, 0}, // 0xfb34 he+dagesh {0x5d5, 0x5bc, 0}, // 0xfb35 vav+dagesh {0x5d6, 0x5bc, 0}, // 0xfb36 zayin+dagesh {0xfb37, 0, 0}, // 0xfb37 -- UNUSED {0x5d8, 0x5bc, 0}, // 0xfb38 tet+dagesh {0x5d9, 0x5bc, 0}, // 0xfb39 yud+dagesh {0x5da, 0x5bc, 0}, // 0xfb3a kaf sofit+dagesh {0x5db, 0x5bc, 0}, // 0xfb3b kaf+dagesh {0x5dc, 0x5bc, 0}, // 0xfb3c lamed+dagesh {0xfb3d, 0, 0}, // 0xfb3d -- UNUSED {0x5de, 0x5bc, 0}, // 0xfb3e mem+dagesh {0xfb3f, 0, 0}, // 0xfb3f -- UNUSED {0x5e0, 0x5bc, 0}, // 0xfb40 nun+dagesh {0x5e1, 0x5bc, 0}, // 0xfb41 samech+dagesh {0xfb42, 0, 0}, // 0xfb42 -- UNUSED {0x5e3, 0x5bc, 0}, // 0xfb43 pe sofit+dagesh {0x5e4, 0x5bc,0}, // 0xfb44 pe+dagesh {0xfb45, 0, 0}, // 0xfb45 -- UNUSED {0x5e6, 0x5bc, 0}, // 0xfb46 tsadi+dagesh {0x5e7, 0x5bc, 0}, // 0xfb47 qof+dagesh {0x5e8, 0x5bc, 0}, // 0xfb48 resh+dagesh {0x5e9, 0x5bc, 0}, // 0xfb49 shin+dagesh {0x5ea, 0x5bc, 0}, // 0xfb4a tav+dagesh {0x5d5, 0x5b9, 0}, // 0xfb4b vav+holam {0x5d1, 0x5bf, 0}, // 0xfb4c bet+rafe {0x5db, 0x5bf, 0}, // 0xfb4d kaf+rafe {0x5e4, 0x5bf, 0}, // 0xfb4e pe+rafe {0x5d0, 0x5dc, 0} // 0xfb4f alef-lamed }; static void mb_decompose(int c, int *c1, int *c2, int *c3) { decomp_T d; if (c >= 0xfb20 && c <= 0xfb4f) { d = decomp_table[c - 0xfb20]; *c1 = d.a; *c2 = d.b; *c3 = d.c; } else { *c1 = c; *c2 = *c3 = 0; } } /* * Compare two strings, ignore case if rex.reg_ic set. * Return 0 if strings match, non-zero otherwise. * Correct the length "*n" when composing characters are ignored. */ static int cstrncmp(char_u *s1, char_u *s2, int *n) { int result; if (!rex.reg_ic) result = STRNCMP(s1, s2, *n); else result = MB_STRNICMP(s1, s2, *n); // if it failed and it's utf8 and we want to combineignore: if (result != 0 && enc_utf8 && rex.reg_icombine) { char_u *str1, *str2; int c1, c2, c11, c12; int junk; // we have to handle the strcmp ourselves, since it is necessary to // deal with the composing characters by ignoring them: str1 = s1; str2 = s2; c1 = c2 = 0; while ((int)(str1 - s1) < *n) { c1 = mb_ptr2char_adv(&str1); c2 = mb_ptr2char_adv(&str2); // Decompose the character if necessary, into 'base' characters. // Currently hard-coded for Hebrew, Arabic to be done... if (c1 != c2 && (!rex.reg_ic || utf_fold(c1) != utf_fold(c2))) { // decomposition necessary? mb_decompose(c1, &c11, &junk, &junk); mb_decompose(c2, &c12, &junk, &junk); c1 = c11; c2 = c12; if (c11 != c12 && (!rex.reg_ic || utf_fold(c11) != utf_fold(c12))) break; } } result = c2 - c1; if (result == 0) *n = (int)(str2 - s2); } return result; } /* * cstrchr: This function is used a lot for simple searches, keep it fast! */ static char_u * cstrchr(char_u *s, int c) { char_u *p; int cc; if (!rex.reg_ic || (!enc_utf8 && mb_char2len(c) > 1)) return vim_strchr(s, c); // tolower() and toupper() can be slow, comparing twice should be a lot // faster (esp. when using MS Visual C++!). // For UTF-8 need to use folded case. if (enc_utf8 && c > 0x80) cc = utf_fold(c); else if (MB_ISUPPER(c)) cc = MB_TOLOWER(c); else if (MB_ISLOWER(c)) cc = MB_TOUPPER(c); else return vim_strchr(s, c); if (has_mbyte) { for (p = s; *p != NUL; p += (*mb_ptr2len)(p)) { if (enc_utf8 && c > 0x80) { int uc = utf_ptr2char(p); // Do not match an illegal byte. E.g. 0xff matches 0xc3 0xbf, // not 0xff. if ((uc < 0x80 || uc != *p) && utf_fold(uc) == cc) return p; } else if (*p == c || *p == cc) return p; } } else // Faster version for when there are no multi-byte characters. for (p = s; *p != NUL; ++p) if (*p == c || *p == cc) return p; return NULL; } //////////////////////////////////////////////////////////////// // regsub stuff // //////////////////////////////////////////////////////////////// typedef void (*fptr_T)(int *, int); static int vim_regsub_both(char_u *source, typval_T *expr, char_u *dest, int destlen, int flags); static void do_upper(int *d, int c) { *d = MB_TOUPPER(c); } static void do_lower(int *d, int c) { *d = MB_TOLOWER(c); } /* * regtilde(): Replace tildes in the pattern by the old pattern. * * Short explanation of the tilde: It stands for the previous replacement * pattern. If that previous pattern also contains a ~ we should go back a * step further... But we insert the previous pattern into the current one * and remember that. * This still does not handle the case where "magic" changes. So require the * user to keep his hands off of "magic". * * The tildes are parsed once before the first call to vim_regsub(). */ char_u * regtilde(char_u *source, int magic) { char_u *newsub = source; char_u *p; for (p = newsub; *p; ++p) { if ((*p == '~' && magic) || (*p == '\\' && *(p + 1) == '~' && !magic)) { if (reg_prev_sub != NULL) { // length = len(newsub) - 1 + len(prev_sub) + 1 // Avoid making the text longer than MAXCOL, it will cause // trouble at some point. size_t prevsublen = STRLEN(reg_prev_sub); size_t newsublen = STRLEN(newsub); if (prevsublen > MAXCOL || newsublen > MAXCOL || newsublen + prevsublen > MAXCOL) { emsg(_(e_resulting_text_too_long)); break; } char_u *tmpsub = alloc(newsublen + prevsublen); if (tmpsub != NULL) { // copy prefix size_t prefixlen = p - newsub; // not including ~ mch_memmove(tmpsub, newsub, prefixlen); // interpret tilde mch_memmove(tmpsub + prefixlen, reg_prev_sub, prevsublen); // copy postfix if (!magic) ++p; // back off backslash STRCPY(tmpsub + prefixlen + prevsublen, p + 1); if (newsub != source) // allocated newsub before vim_free(newsub); newsub = tmpsub; p = newsub + prefixlen + prevsublen; } } else if (magic) STRMOVE(p, p + 1); // remove '~' else STRMOVE(p, p + 2); // remove '\~' --p; } else { if (*p == '\\' && p[1]) // skip escaped characters ++p; if (has_mbyte) p += (*mb_ptr2len)(p) - 1; } } // Store a copy of newsub in reg_prev_sub. It is always allocated, // because recursive calls may make the returned string invalid. vim_free(reg_prev_sub); reg_prev_sub = vim_strsave(newsub); return newsub; } #ifdef FEAT_EVAL static int can_f_submatch = FALSE; // TRUE when submatch() can be used // These pointers are used for reg_submatch(). Needed for when the // substitution string is an expression that contains a call to substitute() // and submatch(). typedef struct { regmatch_T *sm_match; regmmatch_T *sm_mmatch; linenr_T sm_firstlnum; linenr_T sm_maxline; int sm_line_lbr; } regsubmatch_T; static regsubmatch_T rsm; // can only be used when can_f_submatch is TRUE #endif #ifdef FEAT_EVAL /* * Put the submatches in "argv[argskip]" which is a list passed into * call_func() by vim_regsub_both(). */ static int fill_submatch_list(int argc UNUSED, typval_T *argv, int argskip, ufunc_T *fp) { listitem_T *li; int i; char_u *s; typval_T *listarg = argv + argskip; if (!has_varargs(fp) && fp->uf_args.ga_len <= argskip) // called function doesn't take a submatches argument return argskip; // Relies on sl_list to be the first item in staticList10_T. init_static_list((staticList10_T *)(listarg->vval.v_list)); // There are always 10 list items in staticList10_T. li = listarg->vval.v_list->lv_first; for (i = 0; i < 10; ++i) { s = rsm.sm_match->startp[i]; if (s == NULL || rsm.sm_match->endp[i] == NULL) s = NULL; else s = vim_strnsave(s, rsm.sm_match->endp[i] - s); li->li_tv.v_type = VAR_STRING; li->li_tv.vval.v_string = s; li = li->li_next; } return argskip + 1; } static void clear_submatch_list(staticList10_T *sl) { int i; for (i = 0; i < 10; ++i) vim_free(sl->sl_items[i].li_tv.vval.v_string); } #endif /* * vim_regsub() - perform substitutions after a vim_regexec() or * vim_regexec_multi() match. * * If "flags" has REGSUB_COPY really copy into "dest[destlen]". * Otherwise nothing is copied, only compute the length of the result. * * If "flags" has REGSUB_MAGIC then behave like 'magic' is set. * * If "flags" has REGSUB_BACKSLASH a backslash will be removed later, need to * double them to keep them, and insert a backslash before a CR to avoid it * being replaced with a line break later. * * Note: The matched text must not change between the call of * vim_regexec()/vim_regexec_multi() and vim_regsub()! It would make the back * references invalid! * * Returns the size of the replacement, including terminating NUL. */ int vim_regsub( regmatch_T *rmp, char_u *source, typval_T *expr, char_u *dest, int destlen, int flags) { int result; regexec_T rex_save; int rex_in_use_save = rex_in_use; if (rex_in_use) // Being called recursively, save the state. rex_save = rex; rex_in_use = TRUE; rex.reg_match = rmp; rex.reg_mmatch = NULL; rex.reg_maxline = 0; rex.reg_buf = curbuf; rex.reg_line_lbr = TRUE; result = vim_regsub_both(source, expr, dest, destlen, flags); rex_in_use = rex_in_use_save; if (rex_in_use) rex = rex_save; return result; } int vim_regsub_multi( regmmatch_T *rmp, linenr_T lnum, char_u *source, char_u *dest, int destlen, int flags) { int result; regexec_T rex_save; int rex_in_use_save = rex_in_use; if (rex_in_use) // Being called recursively, save the state. rex_save = rex; rex_in_use = TRUE; rex.reg_match = NULL; rex.reg_mmatch = rmp; rex.reg_buf = curbuf; // always works on the current buffer! rex.reg_firstlnum = lnum; rex.reg_maxline = curbuf->b_ml.ml_line_count - lnum; rex.reg_line_lbr = FALSE; result = vim_regsub_both(source, NULL, dest, destlen, flags); rex_in_use = rex_in_use_save; if (rex_in_use) rex = rex_save; return result; } #if defined(FEAT_EVAL) || defined(PROTO) // When nesting more than a couple levels it's probably a mistake. # define MAX_REGSUB_NESTING 4 static char_u *eval_result[MAX_REGSUB_NESTING] = {NULL, NULL, NULL, NULL}; # if defined(EXITFREE) || defined(PROTO) void free_resub_eval_result(void) { int i; for (i = 0; i < MAX_REGSUB_NESTING; ++i) VIM_CLEAR(eval_result[i]); } # endif #endif static int vim_regsub_both( char_u *source, typval_T *expr, char_u *dest, int destlen, int flags) { char_u *src; char_u *dst; char_u *s; int c; int cc; int no = -1; fptr_T func_all = (fptr_T)NULL; fptr_T func_one = (fptr_T)NULL; linenr_T clnum = 0; // init for GCC int len = 0; // init for GCC #ifdef FEAT_EVAL static int nesting = 0; int nested; #endif int copy = flags & REGSUB_COPY; // Be paranoid... if ((source == NULL && expr == NULL) || dest == NULL) { iemsg(e_null_argument); return 0; } if (prog_magic_wrong()) return 0; #ifdef FEAT_EVAL if (nesting == MAX_REGSUB_NESTING) { emsg(_(e_substitute_nesting_too_deep)); return 0; } nested = nesting; #endif src = source; dst = dest; /* * When the substitute part starts with "\=" evaluate it as an expression. */ if (expr != NULL || (source[0] == '\\' && source[1] == '=')) { #ifdef FEAT_EVAL // To make sure that the length doesn't change between checking the // length and copying the string, and to speed up things, the // resulting string is saved from the call with // "flags & REGSUB_COPY" == 0 to the call with // "flags & REGSUB_COPY" != 0. if (copy) { if (eval_result[nested] != NULL && (int)STRLEN(eval_result[nested]) < destlen) { STRCPY(dest, eval_result[nested]); dst += STRLEN(eval_result[nested]); VIM_CLEAR(eval_result[nested]); } } else { int prev_can_f_submatch = can_f_submatch; regsubmatch_T rsm_save; VIM_CLEAR(eval_result[nested]); // The expression may contain substitute(), which calls us // recursively. Make sure submatch() gets the text from the first // level. if (can_f_submatch) rsm_save = rsm; can_f_submatch = TRUE; rsm.sm_match = rex.reg_match; rsm.sm_mmatch = rex.reg_mmatch; rsm.sm_firstlnum = rex.reg_firstlnum; rsm.sm_maxline = rex.reg_maxline; rsm.sm_line_lbr = rex.reg_line_lbr; // Although unlikely, it is possible that the expression invokes a // substitute command (it might fail, but still). Therefore keep // an array of eval results. ++nesting; if (expr != NULL) { typval_T argv[2]; char_u buf[NUMBUFLEN]; typval_T rettv; staticList10_T matchList; funcexe_T funcexe; rettv.v_type = VAR_STRING; rettv.vval.v_string = NULL; argv[0].v_type = VAR_LIST; argv[0].vval.v_list = &matchList.sl_list; matchList.sl_list.lv_len = 0; CLEAR_FIELD(funcexe); funcexe.fe_argv_func = fill_submatch_list; funcexe.fe_evaluate = TRUE; if (expr->v_type == VAR_FUNC) { s = expr->vval.v_string; call_func(s, -1, &rettv, 1, argv, &funcexe); } else if (expr->v_type == VAR_PARTIAL) { partial_T *partial = expr->vval.v_partial; s = partial_name(partial); funcexe.fe_partial = partial; call_func(s, -1, &rettv, 1, argv, &funcexe); } else if (expr->v_type == VAR_INSTR) { exe_typval_instr(expr, &rettv); } if (matchList.sl_list.lv_len > 0) // fill_submatch_list() was called clear_submatch_list(&matchList); if (rettv.v_type == VAR_UNKNOWN) // something failed, no need to report another error eval_result[nested] = NULL; else { eval_result[nested] = tv_get_string_buf_chk(&rettv, buf); if (eval_result[nested] != NULL) eval_result[nested] = vim_strsave(eval_result[nested]); } clear_tv(&rettv); } else if (substitute_instr != NULL) // Execute instructions from ISN_SUBSTITUTE. eval_result[nested] = exe_substitute_instr(); else eval_result[nested] = eval_to_string(source + 2, TRUE, FALSE); --nesting; if (eval_result[nested] != NULL) { int had_backslash = FALSE; for (s = eval_result[nested]; *s != NUL; MB_PTR_ADV(s)) { // Change NL to CR, so that it becomes a line break, // unless called from vim_regexec_nl(). // Skip over a backslashed character. if (*s == NL && !rsm.sm_line_lbr) *s = CAR; else if (*s == '\\' && s[1] != NUL) { ++s; /* Change NL to CR here too, so that this works: * :s/abc\\\ndef/\="aaa\\\nbbb"/ on text: * abc\ * def * Not when called from vim_regexec_nl(). */ if (*s == NL && !rsm.sm_line_lbr) *s = CAR; had_backslash = TRUE; } } if (had_backslash && (flags & REGSUB_BACKSLASH)) { // Backslashes will be consumed, need to double them. s = vim_strsave_escaped(eval_result[nested], (char_u *)"\\"); if (s != NULL) { vim_free(eval_result[nested]); eval_result[nested] = s; } } dst += STRLEN(eval_result[nested]); } can_f_submatch = prev_can_f_submatch; if (can_f_submatch) rsm = rsm_save; } #endif } else while ((c = *src++) != NUL) { if (c == '&' && (flags & REGSUB_MAGIC)) no = 0; else if (c == '\\' && *src != NUL) { if (*src == '&' && !(flags & REGSUB_MAGIC)) { ++src; no = 0; } else if ('0' <= *src && *src <= '9') { no = *src++ - '0'; } else if (vim_strchr((char_u *)"uUlLeE", *src)) { switch (*src++) { case 'u': func_one = do_upper; continue; case 'U': func_all = do_upper; continue; case 'l': func_one = do_lower; continue; case 'L': func_all = do_lower; continue; case 'e': case 'E': func_one = func_all = (fptr_T)NULL; continue; } } } if (no < 0) // Ordinary character. { if (c == K_SPECIAL && src[0] != NUL && src[1] != NUL) { // Copy a special key as-is. if (copy) { if (dst + 3 > dest + destlen) { iemsg("vim_regsub_both(): not enough space"); return 0; } *dst++ = c; *dst++ = *src++; *dst++ = *src++; } else { dst += 3; src += 2; } continue; } if (c == '\\' && *src != NUL) { // Check for abbreviations -- webb switch (*src) { case 'r': c = CAR; ++src; break; case 'n': c = NL; ++src; break; case 't': c = TAB; ++src; break; // Oh no! \e already has meaning in subst pat :-( // case 'e': c = ESC; ++src; break; case 'b': c = Ctrl_H; ++src; break; // If "backslash" is TRUE the backslash will be removed // later. Used to insert a literal CR. default: if (flags & REGSUB_BACKSLASH) { if (copy) { if (dst + 1 > dest + destlen) { iemsg("vim_regsub_both(): not enough space"); return 0; } *dst = '\\'; } ++dst; } c = *src++; } } else if (has_mbyte) c = mb_ptr2char(src - 1); // Write to buffer, if copy is set. if (func_one != (fptr_T)NULL) { func_one(&cc, c); func_one = NULL; } else if (func_all != (fptr_T)NULL) func_all(&cc, c); else // just copy cc = c; if (has_mbyte) { int totlen = mb_ptr2len(src - 1); int charlen = mb_char2len(cc); if (copy) { if (dst + charlen > dest + destlen) { iemsg("vim_regsub_both(): not enough space"); return 0; } mb_char2bytes(cc, dst); } dst += charlen - 1; if (enc_utf8) { int clen = utf_ptr2len(src - 1); // If the character length is shorter than "totlen", there // are composing characters; copy them as-is. if (clen < totlen) { if (copy) { if (dst + totlen - clen > dest + destlen) { iemsg("vim_regsub_both(): not enough space"); return 0; } mch_memmove(dst + 1, src - 1 + clen, (size_t)(totlen - clen)); } dst += totlen - clen; } } src += totlen - 1; } else if (copy) { if (dst + 1 > dest + destlen) { iemsg("vim_regsub_both(): not enough space"); return 0; } *dst = cc; } dst++; } else { if (REG_MULTI) { clnum = rex.reg_mmatch->startpos[no].lnum; if (clnum < 0 || rex.reg_mmatch->endpos[no].lnum < 0) s = NULL; else { s = reg_getline(clnum) + rex.reg_mmatch->startpos[no].col; if (rex.reg_mmatch->endpos[no].lnum == clnum) len = rex.reg_mmatch->endpos[no].col - rex.reg_mmatch->startpos[no].col; else len = (int)STRLEN(s); } } else { s = rex.reg_match->startp[no]; if (rex.reg_match->endp[no] == NULL) s = NULL; else len = (int)(rex.reg_match->endp[no] - s); } if (s != NULL) { for (;;) { if (len == 0) { if (REG_MULTI) { if (rex.reg_mmatch->endpos[no].lnum == clnum) break; if (copy) { if (dst + 1 > dest + destlen) { iemsg("vim_regsub_both(): not enough space"); return 0; } *dst = CAR; } ++dst; s = reg_getline(++clnum); if (rex.reg_mmatch->endpos[no].lnum == clnum) len = rex.reg_mmatch->endpos[no].col; else len = (int)STRLEN(s); } else break; } else if (*s == NUL) // we hit NUL. { if (copy) iemsg(e_damaged_match_string); goto exit; } else { if ((flags & REGSUB_BACKSLASH) && (*s == CAR || *s == '\\')) { /* * Insert a backslash in front of a CR, otherwise * it will be replaced by a line break. * Number of backslashes will be halved later, * double them here. */ if (copy) { if (dst + 2 > dest + destlen) { iemsg("vim_regsub_both(): not enough space"); return 0; } dst[0] = '\\'; dst[1] = *s; } dst += 2; } else { if (has_mbyte) c = mb_ptr2char(s); else c = *s; if (func_one != (fptr_T)NULL) { func_one(&cc, c); func_one = NULL; } else if (func_all != (fptr_T)NULL) func_all(&cc, c); else // just copy cc = c; if (has_mbyte) { int l; int charlen; // Copy composing characters separately, one // at a time. if (enc_utf8) l = utf_ptr2len(s) - 1; else l = mb_ptr2len(s) - 1; s += l; len -= l; charlen = mb_char2len(cc); if (copy) { if (dst + charlen > dest + destlen) { iemsg("vim_regsub_both(): not enough space"); return 0; } mb_char2bytes(cc, dst); } dst += charlen - 1; } else if (copy) { if (dst + 1 > dest + destlen) { iemsg("vim_regsub_both(): not enough space"); return 0; } *dst = cc; } dst++; } ++s; --len; } } } no = -1; } } if (copy) *dst = NUL; exit: return (int)((dst - dest) + 1); } #ifdef FEAT_EVAL /* * Call reg_getline() with the line numbers from the submatch. If a * substitute() was used the reg_maxline and other values have been * overwritten. */ static char_u * reg_getline_submatch(linenr_T lnum) { char_u *s; linenr_T save_first = rex.reg_firstlnum; linenr_T save_max = rex.reg_maxline; rex.reg_firstlnum = rsm.sm_firstlnum; rex.reg_maxline = rsm.sm_maxline; s = reg_getline(lnum); rex.reg_firstlnum = save_first; rex.reg_maxline = save_max; return s; } /* * Used for the submatch() function: get the string from the n'th submatch in * allocated memory. * Returns NULL when not in a ":s" command and for a non-existing submatch. */ char_u * reg_submatch(int no) { char_u *retval = NULL; char_u *s; int len; int round; linenr_T lnum; if (!can_f_submatch || no < 0) return NULL; if (rsm.sm_match == NULL) { /* * First round: compute the length and allocate memory. * Second round: copy the text. */ for (round = 1; round <= 2; ++round) { lnum = rsm.sm_mmatch->startpos[no].lnum; if (lnum < 0 || rsm.sm_mmatch->endpos[no].lnum < 0) return NULL; s = reg_getline_submatch(lnum); if (s == NULL) // anti-crash check, cannot happen? break; s += rsm.sm_mmatch->startpos[no].col; if (rsm.sm_mmatch->endpos[no].lnum == lnum) { // Within one line: take form start to end col. len = rsm.sm_mmatch->endpos[no].col - rsm.sm_mmatch->startpos[no].col; if (round == 2) vim_strncpy(retval, s, len); ++len; } else { // Multiple lines: take start line from start col, middle // lines completely and end line up to end col. len = (int)STRLEN(s); if (round == 2) { STRCPY(retval, s); retval[len] = '\n'; } ++len; ++lnum; while (lnum < rsm.sm_mmatch->endpos[no].lnum) { s = reg_getline_submatch(lnum++); if (round == 2) STRCPY(retval + len, s); len += (int)STRLEN(s); if (round == 2) retval[len] = '\n'; ++len; } if (round == 2) STRNCPY(retval + len, reg_getline_submatch(lnum), rsm.sm_mmatch->endpos[no].col); len += rsm.sm_mmatch->endpos[no].col; if (round == 2) retval[len] = NUL; ++len; } if (retval == NULL) { retval = alloc(len); if (retval == NULL) return NULL; } } } else { s = rsm.sm_match->startp[no]; if (s == NULL || rsm.sm_match->endp[no] == NULL) retval = NULL; else retval = vim_strnsave(s, rsm.sm_match->endp[no] - s); } return retval; } /* * Used for the submatch() function with the optional non-zero argument: get * the list of strings from the n'th submatch in allocated memory with NULs * represented in NLs. * Returns a list of allocated strings. Returns NULL when not in a ":s" * command, for a non-existing submatch and for any error. */ list_T * reg_submatch_list(int no) { char_u *s; linenr_T slnum; linenr_T elnum; colnr_T scol; colnr_T ecol; int i; list_T *list; int error = FALSE; if (!can_f_submatch || no < 0) return NULL; if (rsm.sm_match == NULL) { slnum = rsm.sm_mmatch->startpos[no].lnum; elnum = rsm.sm_mmatch->endpos[no].lnum; if (slnum < 0 || elnum < 0) return NULL; scol = rsm.sm_mmatch->startpos[no].col; ecol = rsm.sm_mmatch->endpos[no].col; list = list_alloc(); if (list == NULL) return NULL; s = reg_getline_submatch(slnum) + scol; if (slnum == elnum) { if (list_append_string(list, s, ecol - scol) == FAIL) error = TRUE; } else { if (list_append_string(list, s, -1) == FAIL) error = TRUE; for (i = 1; i < elnum - slnum; i++) { s = reg_getline_submatch(slnum + i); if (list_append_string(list, s, -1) == FAIL) error = TRUE; } s = reg_getline_submatch(elnum); if (list_append_string(list, s, ecol) == FAIL) error = TRUE; } } else { s = rsm.sm_match->startp[no]; if (s == NULL || rsm.sm_match->endp[no] == NULL) return NULL; list = list_alloc(); if (list == NULL) return NULL; if (list_append_string(list, s, (int)(rsm.sm_match->endp[no] - s)) == FAIL) error = TRUE; } if (error) { list_free(list); return NULL; } ++list->lv_refcount; return list; } #endif /* * Initialize the values used for matching against multiple lines */ static void init_regexec_multi( regmmatch_T *rmp, win_T *win, // window in which to search or NULL buf_T *buf, // buffer in which to search linenr_T lnum) // nr of line to start looking for match { rex.reg_match = NULL; rex.reg_mmatch = rmp; rex.reg_buf = buf; rex.reg_win = win; rex.reg_firstlnum = lnum; rex.reg_maxline = rex.reg_buf->b_ml.ml_line_count - lnum; rex.reg_line_lbr = FALSE; rex.reg_ic = rmp->rmm_ic; rex.reg_icombine = FALSE; rex.reg_maxcol = rmp->rmm_maxcol; } #include "regexp_bt.c" static regengine_T bt_regengine = { bt_regcomp, bt_regfree, bt_regexec_nl, bt_regexec_multi, }; #include "regexp_nfa.c" static regengine_T nfa_regengine = { nfa_regcomp, nfa_regfree, nfa_regexec_nl, nfa_regexec_multi, }; // Which regexp engine to use? Needed for vim_regcomp(). // Must match with 'regexpengine'. static int regexp_engine = 0; #ifdef DEBUG static char_u regname[][30] = { "AUTOMATIC Regexp Engine", "BACKTRACKING Regexp Engine", "NFA Regexp Engine" }; #endif /* * Compile a regular expression into internal code. * Returns the program in allocated memory. * Use vim_regfree() to free the memory. * Returns NULL for an error. */ regprog_T * vim_regcomp(char_u *expr_arg, int re_flags) { regprog_T *prog = NULL; char_u *expr = expr_arg; int called_emsg_before; regexp_engine = p_re; // Check for prefix "\%#=", that sets the regexp engine if (STRNCMP(expr, "\\%#=", 4) == 0) { int newengine = expr[4] - '0'; if (newengine == AUTOMATIC_ENGINE || newengine == BACKTRACKING_ENGINE || newengine == NFA_ENGINE) { regexp_engine = expr[4] - '0'; expr += 5; #ifdef DEBUG smsg("New regexp mode selected (%d): %s", regexp_engine, regname[newengine]); #endif } else { emsg(_(e_percent_hash_can_only_be_followed_by_zero_one_two_automatic_engine_will_be_used)); regexp_engine = AUTOMATIC_ENGINE; } } #ifdef DEBUG bt_regengine.expr = expr; nfa_regengine.expr = expr; #endif // reg_iswordc() uses rex.reg_buf rex.reg_buf = curbuf; /* * First try the NFA engine, unless backtracking was requested. */ called_emsg_before = called_emsg; if (regexp_engine != BACKTRACKING_ENGINE) prog = nfa_regengine.regcomp(expr, re_flags + (regexp_engine == AUTOMATIC_ENGINE ? RE_AUTO : 0)); else prog = bt_regengine.regcomp(expr, re_flags); // Check for error compiling regexp with initial engine. if (prog == NULL) { #ifdef BT_REGEXP_DEBUG_LOG if (regexp_engine == BACKTRACKING_ENGINE) // debugging log for BT engine { FILE *f; f = fopen(BT_REGEXP_DEBUG_LOG_NAME, "a"); if (f) { fprintf(f, "Syntax error in \"%s\"\n", expr); fclose(f); } else semsg("(NFA) Could not open \"%s\" to write !!!", BT_REGEXP_DEBUG_LOG_NAME); } #endif /* * If the NFA engine failed, try the backtracking engine. * The NFA engine also fails for patterns that it can't handle well * but are still valid patterns, thus a retry should work. * But don't try if an error message was given. */ if (regexp_engine == AUTOMATIC_ENGINE && called_emsg == called_emsg_before) { regexp_engine = BACKTRACKING_ENGINE; #ifdef FEAT_EVAL report_re_switch(expr); #endif prog = bt_regengine.regcomp(expr, re_flags); } } if (prog != NULL) { // Store the info needed to call regcomp() again when the engine turns // out to be very slow when executing it. prog->re_engine = regexp_engine; prog->re_flags = re_flags; } return prog; } /* * Free a compiled regexp program, returned by vim_regcomp(). */ void vim_regfree(regprog_T *prog) { if (prog != NULL) prog->engine->regfree(prog); } #if defined(EXITFREE) || defined(PROTO) void free_regexp_stuff(void) { ga_clear(®stack); ga_clear(&backpos); vim_free(reg_tofree); vim_free(reg_prev_sub); } #endif #ifdef FEAT_EVAL static void report_re_switch(char_u *pat) { if (p_verbose > 0) { verbose_enter(); msg_puts(_("Switching to backtracking RE engine for pattern: ")); msg_puts((char *)pat); verbose_leave(); } } #endif #if defined(FEAT_X11) || defined(PROTO) /* * Return whether "prog" is currently being executed. */ int regprog_in_use(regprog_T *prog) { return prog->re_in_use; } #endif /* * Match a regexp against a string. * "rmp->regprog" must be a compiled regexp as returned by vim_regcomp(). * Note: "rmp->regprog" may be freed and changed. * Uses curbuf for line count and 'iskeyword'. * When "nl" is TRUE consider a "\n" in "line" to be a line break. * * Return TRUE if there is a match, FALSE if not. */ static int vim_regexec_string( regmatch_T *rmp, char_u *line, // string to match against colnr_T col, // column to start looking for match int nl) { int result; regexec_T rex_save; int rex_in_use_save = rex_in_use; // Cannot use the same prog recursively, it contains state. if (rmp->regprog->re_in_use) { emsg(_(e_cannot_use_pattern_recursively)); return FALSE; } rmp->regprog->re_in_use = TRUE; if (rex_in_use) // Being called recursively, save the state. rex_save = rex; rex_in_use = TRUE; rex.reg_startp = NULL; rex.reg_endp = NULL; rex.reg_startpos = NULL; rex.reg_endpos = NULL; result = rmp->regprog->engine->regexec_nl(rmp, line, col, nl); rmp->regprog->re_in_use = FALSE; // NFA engine aborted because it's very slow. if (rmp->regprog->re_engine == AUTOMATIC_ENGINE && result == NFA_TOO_EXPENSIVE) { int save_p_re = p_re; int re_flags = rmp->regprog->re_flags; char_u *pat = vim_strsave(((nfa_regprog_T *)rmp->regprog)->pattern); p_re = BACKTRACKING_ENGINE; vim_regfree(rmp->regprog); if (pat != NULL) { #ifdef FEAT_EVAL report_re_switch(pat); #endif rmp->regprog = vim_regcomp(pat, re_flags); if (rmp->regprog != NULL) { rmp->regprog->re_in_use = TRUE; result = rmp->regprog->engine->regexec_nl(rmp, line, col, nl); rmp->regprog->re_in_use = FALSE; } vim_free(pat); } p_re = save_p_re; } rex_in_use = rex_in_use_save; if (rex_in_use) rex = rex_save; return result > 0; } #if defined(FEAT_SPELL) || defined(FEAT_EVAL) || defined(FEAT_X11) || defined(PROTO) /* * Note: "*prog" may be freed and changed. * Return TRUE if there is a match, FALSE if not. */ int vim_regexec_prog( regprog_T **prog, int ignore_case, char_u *line, colnr_T col) { int r; regmatch_T regmatch; regmatch.regprog = *prog; regmatch.rm_ic = ignore_case; r = vim_regexec_string(®match, line, col, FALSE); *prog = regmatch.regprog; return r; } #endif /* * Note: "rmp->regprog" may be freed and changed. * Return TRUE if there is a match, FALSE if not. */ int vim_regexec(regmatch_T *rmp, char_u *line, colnr_T col) { return vim_regexec_string(rmp, line, col, FALSE); } /* * Like vim_regexec(), but consider a "\n" in "line" to be a line break. * Note: "rmp->regprog" may be freed and changed. * Return TRUE if there is a match, FALSE if not. */ int vim_regexec_nl(regmatch_T *rmp, char_u *line, colnr_T col) { return vim_regexec_string(rmp, line, col, TRUE); } /* * Match a regexp against multiple lines. * "rmp->regprog" must be a compiled regexp as returned by vim_regcomp(). * Note: "rmp->regprog" may be freed and changed, even set to NULL. * Uses curbuf for line count and 'iskeyword'. * * Return zero if there is no match. Return number of lines contained in the * match otherwise. */ long vim_regexec_multi( regmmatch_T *rmp, win_T *win, // window in which to search or NULL buf_T *buf, // buffer in which to search linenr_T lnum, // nr of line to start looking for match colnr_T col, // column to start looking for match int *timed_out) // flag is set when timeout limit reached { int result; regexec_T rex_save; int rex_in_use_save = rex_in_use; // Cannot use the same prog recursively, it contains state. if (rmp->regprog->re_in_use) { emsg(_(e_cannot_use_pattern_recursively)); return FALSE; } rmp->regprog->re_in_use = TRUE; if (rex_in_use) // Being called recursively, save the state. rex_save = rex; rex_in_use = TRUE; result = rmp->regprog->engine->regexec_multi( rmp, win, buf, lnum, col, timed_out); rmp->regprog->re_in_use = FALSE; // NFA engine aborted because it's very slow. if (rmp->regprog->re_engine == AUTOMATIC_ENGINE && result == NFA_TOO_EXPENSIVE) { int save_p_re = p_re; int re_flags = rmp->regprog->re_flags; char_u *pat = vim_strsave(((nfa_regprog_T *)rmp->regprog)->pattern); p_re = BACKTRACKING_ENGINE; if (pat != NULL) { regprog_T *prev_prog = rmp->regprog; #ifdef FEAT_EVAL report_re_switch(pat); #endif #ifdef FEAT_SYN_HL // checking for \z misuse was already done when compiling for NFA, // allow all here reg_do_extmatch = REX_ALL; #endif rmp->regprog = vim_regcomp(pat, re_flags); #ifdef FEAT_SYN_HL reg_do_extmatch = 0; #endif if (rmp->regprog == NULL) { // Somehow compiling the pattern failed now, put back the // previous one to avoid "regprog" becoming NULL. rmp->regprog = prev_prog; } else { vim_regfree(prev_prog); rmp->regprog->re_in_use = TRUE; result = rmp->regprog->engine->regexec_multi( rmp, win, buf, lnum, col, timed_out); rmp->regprog->re_in_use = FALSE; } vim_free(pat); } p_re = save_p_re; } rex_in_use = rex_in_use_save; if (rex_in_use) rex = rex_save; return result <= 0 ? 0 : result; }