Mercurial > vim
view runtime/doc/usr_41.txt @ 26888:62d4edc0029b
Added tag v8.2.3972 for changeset 6123396796167638d5b15a8974ae9e4387c24880
author | Bram Moolenaar <Bram@vim.org> |
---|---|
date | Sat, 01 Jan 2022 17:30:03 +0100 |
parents | eafb9fd4ec32 |
children | 3e661b0cf500 |
line wrap: on
line source
*usr_41.txt* For Vim version 8.2. Last change: 2021 Dec 30 VIM USER MANUAL - by Bram Moolenaar Write a Vim script The Vim script language is used for the startup vimrc file, syntax files, and many other things. This chapter explains the items that can be used in a Vim script. There are a lot of them, thus this is a long chapter. |41.1| Introduction |41.2| Variables |41.3| Expressions |41.4| Conditionals |41.5| Executing an expression |41.6| Using functions |41.7| Defining a function |41.8| Lists and Dictionaries |41.9| Exceptions |41.10| Various remarks |41.11| Writing a plugin |41.12| Writing a filetype plugin |41.13| Writing a compiler plugin |41.14| Writing a plugin that loads quickly |41.15| Writing library scripts |41.16| Distributing Vim scripts Next chapter: |usr_42.txt| Add new menus Previous chapter: |usr_40.txt| Make new commands Table of contents: |usr_toc.txt| ============================================================================== *41.1* Introduction *vim-script-intro* *script* Your first experience with Vim scripts is the vimrc file. Vim reads it when it starts up and executes the commands. You can set options to values you prefer. And you can use any colon command in it (commands that start with a ":"; these are sometimes referred to as Ex commands or command-line commands). Syntax files are also Vim scripts. As are files that set options for a specific file type. A complicated macro can be defined by a separate Vim script file. You can think of other uses yourself. If you are familiar with Python, you can find a comparison between Python and Vim script here, with pointers to other documents: https://gist.github.com/yegappan/16d964a37ead0979b05e655aa036cad0 And if you are familiar with JavaScript: https://w0rp.com/blog/post/vim-script-for-the-javascripter/ Vim script comes in two flavors: legacy and |Vim9|. Since this help file is for new users, we'll teach you the newer and more convenient |Vim9| syntax. To try out Vim script the best way is to edit a script file and source it. Basically: > :edit test.vim [insert the script lines you want] :w :source % Let's start with a simple example: > vim9script var i = 1 while i < 5 echo "count is" i i += 1 endwhile < The output of the example code is: count is 1 ~ count is 2 ~ count is 3 ~ count is 4 ~ In the first line the `vim9script` command makes clear this is a new, |Vim9| script file. That matters for how the rest of the file is used. The `var i = 1` command declares the "i" variable and initializes it. The generic form is: > var {name} = {expression} In this case the variable name is "i" and the expression is a simple value, the number one. The `while` command starts a loop. The generic form is: > while {condition} {statements} endwhile The statements until the matching `endwhile` are executed for as long as the condition is true. The condition used here is the expression "i < 5". This is true when the variable i is smaller than five. Note: If you happen to write a while loop that keeps on running, you can interrupt it by pressing CTRL-C (CTRL-Break on MS-Windows). The `echo` command prints its arguments. In this case the string "count is" and the value of the variable i. Since i is one, this will print: count is 1 ~ Then there is the `i += 1` command. This does the same thing as "i = i + 1", it adds one to the variable i and assigns the new value to the same variable. The example was given to explain the commands, but would you really want to make such a loop, it can be written much more compact: > for i in range(1, 4) echo "count is" i endfor We won't explain how `for` and `range()` work until later. Follow the links if you are impatient. FOUR KINDS OF NUMBERS Numbers can be decimal, hexadecimal, octal or binary. A hexadecimal number starts with "0x" or "0X". For example "0x1f" is decimal 31. An octal number starts with "0o", "0O". "0o17" is decimal 15. A binary number starts with "0b" or "0B". For example "0b101" is decimal 5. A decimal number is just digits. Careful: In legacy script don't put a zero before a decimal number, it will be interpreted as an octal number! The `echo` command evaluates its argument and always prints decimal numbers. Example: > echo 0x7f 0o36 < 127 30 ~ A number is made negative with a minus sign. This also works for hexadecimal, octal and binary numbers: > echo -0x7f < -127 ~ A minus sign is also used for subtraction. This can sometimes lead to confusion. If we put a minus sign before both numbers we get an error: > echo -0x7f -0o36 < E1004: White space required before and after '-' at "-0o36" ~ Note: if you are not using a |Vim9| script to try out these commands but type them directly, they will be executed as legacy script. Then the echo command sees the second minus sign as subtraction. To get the error, prefix the command with `vim9cmd`: > vim9cmd echo -0x7f -0o36 < E1004: White space required before and after '-' at "-0o36" ~ White space in an expression is often required to make sure it is easy to read and avoid errors. Such as thinking that the "-0o36" above makes the number negative, while it is actually seen as a subtraction. To actually have the minus sign be used for negation, you can put the second expression in parenthesis: > echo -0x7f (-0o36) ============================================================================== *41.2* Variables A variable name consists of ASCII letters, digits and the underscore. It cannot start with a digit. Valid variable names are: counter _aap3 very_long_variable_name_with_underscores FuncLength LENGTH Invalid names are "foo+bar" and "6var". Some variables are global. To see a list of currently defined global variables type this command: > :let You can use global variables everywhere. However, it is easy to use the same name in two unrelated scripts. Therefore variables declared in a script are local to that script. For example, if you have this in "script1.vim": > vim9script var counter = 5 echo counter < 5 ~ And you try to use the variable in "script2.vim": > vim9script echo counter < E121: Undefined variable: counter ~ Using a script-local variable means you can be sure that it is only changed in that script and not elsewhere. If you do want to share variables between scripts, use the "g:" prefix and assign the value directly, do not use `var`. Thus in "script1.vim": > vim9script g:counter = 5 echo g:counter < 5 ~ And then in "script2.vim": > vim9script echo g:counter < 5 ~ More about script-local variables here: |script-variable|. There are more kinds of variables, see |internal-variables|. The most often used ones are: b:name variable local to a buffer w:name variable local to a window g:name global variable (also in a function) v:name variable predefined by Vim DELETING VARIABLES Variables take up memory and show up in the output of the `let` command. To delete a global variable use the `unlet` command. Example: > unlet g:counter This deletes the global variable "g:counter" to free up the memory it uses. If you are not sure if the variable exists, and don't want an error message when it doesn't, append !: > unlet! g:counter You cannot `unlet` script-local variables in |Vim9| script. You can in legacy script. When a script finishes, the local variables declared there will not be deleted. Functions defined in the script can use them. Example: > vim9script var counter = 0 def g:GetCount(): number s:counter += 1 return s:counter enddef Every time you call the function it will return the next count: > :echo g:GetCount() < 1 ~ > :echo g:GetCount() < 2 ~ If you are worried a script-local variable is consuming too much memory, set it to an empty value after you no longer need it. Note: below we'll leave out the `vim9script` line, so we can concentrate on the relevant commands, but you'll still need to put it at the top of your script file. STRING VARIABLES AND CONSTANTS So far only numbers were used for the variable value. Strings can be used as well. Numbers and strings are the basic types of variables that Vim supports. Example: > var name = "Peter" echo name < peter ~ Every variable has a type. Very often, as in this example, the type is defined by assigning a value. This is called type inference. If you do not want to give the variable a value yet, you need to specify the type: > var name: string var age: number ... name = "Peter" age = 42 If you make a mistake and try to assign the wrong type of value you'll get an error: > age = "Peter" < E1012: Type mismatch; expected number but got string ~ More about types in |41.8|. To assign a string value to a variable, you need to use a string constant. There are two types of these. First the string in double quotes, as we used already. If you want to include a double quote inside the string, put a backslash in front of it: > var name = "he is \"Peter\"" echo name < he is "Peter" ~ To avoid the need for a backslash, you can use a string in single quotes: > var name = 'he is "Peter"' echo name < he is "Peter" ~ Inside a single-quote string all the characters are as they are. Only the single quote itself is special: you need to use two to get one. A backslash is taken literally, thus you can't use it to change the meaning of the character after it: > var name = 'P\e''ter''' echo name < P\e'ter' ~ In double-quote strings it is possible to use special characters. Here are a few useful ones: \t <Tab> \n <NL>, line break \r <CR>, <Enter> \e <Esc> \b <BS>, backspace \" " \\ \, backslash \<Esc> <Esc> \<C-W> CTRL-W The last two are just examples. The "\<name>" form can be used to include the special key "name". See |expr-quote| for the full list of special items in a string. ============================================================================== *41.3* Expressions Vim has a fairly standard way to handle expressions. You can read the definition here: |expression-syntax|. Here we will show the most common items. The numbers, strings and variables mentioned above are expressions by themselves. Thus everywhere an expression is expected, you can use a number, string or variable. Other basic items in an expression are: $NAME environment variable &name option @r register Examples: > echo "The value of 'tabstop' is" &ts echo "Your home directory is" $HOME if @a == 'text' The &name form can also be used to set an option value, do something and restore the old value. Example: > var save_ic = &ic set noic s/The Start/The Beginning/ &ic = save_ic This makes sure the "The Start" pattern is used with the 'ignorecase' option off. Still, it keeps the value that the user had set. (Another way to do this would be to add "\C" to the pattern, see |/\C|.) MATHEMATICS It becomes more interesting if we combine these basic items. Let's start with mathematics on numbers: a + b add a - b subtract a * b multiply a / b divide a % b modulo The usual precedence is used. Example: > echo 10 + 5 * 2 < 20 ~ Grouping is done with parentheses. No surprises here. Example: > echo (10 + 5) * 2 < 30 ~ Strings can be concatenated with ".." (see |expr6|). Example: > echo "foo" .. "bar" < foobar ~ When the "echo" command gets multiple arguments, it separates them with a space. In the example the argument is a single expression, thus no space is inserted. Borrowed from the C language is the conditional expression: > a ? b : c If "a" evaluates to true "b" is used, otherwise "c" is used. Example: > var nr = 4 echo nr > 5 ? "nr is big" : "nr is small" < nr is small ~ The three parts of the constructs are always evaluated first, thus you could see it works as: > (a) ? (b) : (c) ============================================================================== *41.4* Conditionals The `if` commands executes the following statements, until the matching `endif`, only when a condition is met. The generic form is: if {condition} {statements} endif Only when the expression {condition} evaluates to true or one will the {statements} be executed. If they are not executed they must still be valid commands. If they contain garbage, Vim won't be able to find the matching `endif`. You can also use `else`. The generic form for this is: if {condition} {statements} else {statements} endif The second {statements} block is only executed if the first one isn't. Finally, there is `elseif` if {condition} {statements} elseif {condition} {statements} endif This works just like using `else` and then `if`, but without the need for an extra `endif`. A useful example for your vimrc file is checking the 'term' option and doing something depending upon its value: > if &term == "xterm" # Do stuff for xterm elseif &term == "vt100" # Do stuff for a vt100 terminal else # Do something for other terminals endif This uses "#" to start a comment, more about that later. LOGIC OPERATIONS We already used some of them in the examples. These are the most often used ones: a == b equal to a != b not equal to a > b greater than a >= b greater than or equal to a < b less than a <= b less than or equal to The result is true if the condition is met and false otherwise. An example: > if v:version >= 700 echo "congratulations" else echo "you are using an old version, upgrade!" endif Here "v:version" is a variable defined by Vim, which has the value of the Vim version. 600 is for version 6.0, version 6.1 has the value 601. This is very useful to write a script that works with multiple versions of Vim. |v:version| The logic operators work both for numbers and strings. When comparing two strings, the mathematical difference is used. This compares byte values, which may not be right for some languages. If you try to compare a string with a number you will get an error. For strings there are two more useful items: str =~ pat matches with str !~ pat does not match with The left item "str" is used as a string. The right item "pat" is used as a pattern, like what's used for searching. Example: > if str =~ " " echo "str contains a space" endif if str !~ '\.$' echo "str does not end in a full stop" endif Notice the use of a single-quote string for the pattern. This is useful, because backslashes would need to be doubled in a double-quote string and patterns tend to contain many backslashes. The match is not anchored, if you want to match the whole string start with "^" and end with "$". The 'ignorecase' option is not used when comparing strings. When you do want to ignore case append "?". Thus "==?" compares two strings to be equal while ignoring case. For the full table see |expr-==|. MORE LOOPING The `while` command was already mentioned. Two more statements can be used in between the `while` and the `endwhile`: continue Jump back to the start of the while loop; the loop continues. break Jump forward to the `endwhile`; the loop is discontinued. Example: > while counter < 40 do_something() if skip_flag continue endif if finished_flag break endif sleep 50m --counter endwhile The `sleep` command makes Vim take a nap. The "50m" specifies fifty milliseconds. Another example is `sleep 4`, which sleeps for four seconds. Even more looping can be done with the `for` command, see below in |41.8|. ============================================================================== *41.5* Executing an expression So far the commands in the script were executed by Vim directly. The `execute` command allows executing the result of an expression. This is a very powerful way to build commands and execute them. An example is to jump to a tag, which is contained in a variable: > execute "tag " .. tag_name The ".." is used to concatenate the string "tag " with the value of variable "tag_name". Suppose "tag_name" has the value "get_cmd", then the command that will be executed is: > tag get_cmd The `execute` command can only execute Ex commands. The `normal` command executes Normal mode commands. However, its argument is not an expression but the literal command characters. Example: > normal gg=G This jumps to the first line with "gg" and formats all lines with the "=" operator and the "G" movement. To make `normal` work with an expression, combine `execute` with it. Example: > execute "normal " .. count .. "j" This will move the cursor "count" lines down. Make sure that the argument for `normal` is a complete command. Otherwise Vim will run into the end of the argument and abort the command. For example, if you start the delete operator, you must give the movement command also. This works: > normal d$ This does nothing: > normal d If you start Insert mode and do not end it with Esc, it will end anyway. This works to insert "new text": > execute "normal inew text" If you want to do something after inserting text you do need to end Insert mode: > execute "normal inew text\<Esc>b" This inserts "new text" and puts the cursor on the first letter of "text". Notice the use of the special key "\<Esc>". This avoids having to enter a real <Esc> character in your script. That is where `execute` with a double-quote string comes in handy. If you don't want to execute a string but evaluate it to get its expression value, you can use the eval() function: > var optname = "path" var optvalue = eval('&' .. optname) A "&" character is prepended to "path", thus the argument to eval() is "&path". The result will then be the value of the 'path' option. ============================================================================== *41.6* Using functions Vim defines many functions and provides a large amount of functionality that way. A few examples will be given in this section. You can find the whole list below: |function-list|. A function is called with the `call` command. The parameters are passed in between parentheses separated by commas. Example: > call search("Date: ", "W") This calls the search() function, with arguments "Date: " and "W". The search() function uses its first argument as a search pattern and the second one as flags. The "W" flag means the search doesn't wrap around the end of the file. Using `call` is optional in |Vim9| script, this works the same way: > search("Date: ", "W") A function can be called in an expression. Example: > var line = getline(".") var repl = substitute(line, '\a', "*", "g") setline(".", repl) The getline() function obtains a line from the current buffer. Its argument is a specification of the line number. In this case "." is used, which means the line where the cursor is. The substitute() function does something similar to the `substitute` command. The first argument is the string on which to perform the substitution. The second argument is the pattern, the third the replacement string. Finally, the last arguments are the flags. The setline() function sets the line, specified by the first argument, to a new string, the second argument. In this example the line under the cursor is replaced with the result of the substitute(). Thus the effect of the three statements is equal to: > :substitute/\a/*/g Using the functions becomes more interesting when you do more work before and after the substitute() call. FUNCTIONS *function-list* There are many functions. We will mention them here, grouped by what they are used for. You can find an alphabetical list here: |builtin-function-list|. Use CTRL-] on the function name to jump to detailed help on it. String manipulation: *string-functions* nr2char() get a character by its number value list2str() get a character string from a list of numbers char2nr() get number value of a character str2list() get list of numbers from a string str2nr() convert a string to a Number str2float() convert a string to a Float printf() format a string according to % items escape() escape characters in a string with a '\' shellescape() escape a string for use with a shell command fnameescape() escape a file name for use with a Vim command tr() translate characters from one set to another strtrans() translate a string to make it printable tolower() turn a string to lowercase toupper() turn a string to uppercase charclass() class of a character match() position where a pattern matches in a string matchend() position where a pattern match ends in a string matchfuzzy() fuzzy matches a string in a list of strings matchfuzzypos() fuzzy matches a string in a list of strings matchstr() match of a pattern in a string matchstrpos() match and positions of a pattern in a string matchlist() like matchstr() and also return submatches stridx() first index of a short string in a long string strridx() last index of a short string in a long string strlen() length of a string in bytes strcharlen() length of a string in characters strchars() number of characters in a string strwidth() size of string when displayed strdisplaywidth() size of string when displayed, deals with tabs setcellwidths() set character cell width overrides substitute() substitute a pattern match with a string submatch() get a specific match in ":s" and substitute() strpart() get part of a string using byte index strcharpart() get part of a string using char index slice() take a slice of a string, using char index in Vim9 script strgetchar() get character from a string using char index expand() expand special keywords expandcmd() expand a command like done for `:edit` iconv() convert text from one encoding to another byteidx() byte index of a character in a string byteidxcomp() like byteidx() but count composing characters charidx() character index of a byte in a string repeat() repeat a string multiple times eval() evaluate a string expression execute() execute an Ex command and get the output win_execute() like execute() but in a specified window trim() trim characters from a string gettext() lookup message translation List manipulation: *list-functions* get() get an item without error for wrong index len() number of items in a List empty() check if List is empty insert() insert an item somewhere in a List add() append an item to a List extend() append a List to a List extendnew() make a new List and append items remove() remove one or more items from a List copy() make a shallow copy of a List deepcopy() make a full copy of a List filter() remove selected items from a List map() change each List item mapnew() make a new List with changed items reduce() reduce a List to a value slice() take a slice of a List sort() sort a List reverse() reverse the order of a List uniq() remove copies of repeated adjacent items split() split a String into a List join() join List items into a String range() return a List with a sequence of numbers string() String representation of a List call() call a function with List as arguments index() index of a value in a List max() maximum value in a List min() minimum value in a List count() count number of times a value appears in a List repeat() repeat a List multiple times flatten() flatten a List flattennew() flatten a copy of a List Dictionary manipulation: *dict-functions* get() get an entry without an error for a wrong key len() number of entries in a Dictionary has_key() check whether a key appears in a Dictionary empty() check if Dictionary is empty remove() remove an entry from a Dictionary extend() add entries from one Dictionary to another extendnew() make a new Dictionary and append items filter() remove selected entries from a Dictionary map() change each Dictionary entry mapnew() make a new Dictionary with changed items keys() get List of Dictionary keys values() get List of Dictionary values items() get List of Dictionary key-value pairs copy() make a shallow copy of a Dictionary deepcopy() make a full copy of a Dictionary string() String representation of a Dictionary max() maximum value in a Dictionary min() minimum value in a Dictionary count() count number of times a value appears Floating point computation: *float-functions* float2nr() convert Float to Number abs() absolute value (also works for Number) round() round off ceil() round up floor() round down trunc() remove value after decimal point fmod() remainder of division exp() exponential log() natural logarithm (logarithm to base e) log10() logarithm to base 10 pow() value of x to the exponent y sqrt() square root sin() sine cos() cosine tan() tangent asin() arc sine acos() arc cosine atan() arc tangent atan2() arc tangent sinh() hyperbolic sine cosh() hyperbolic cosine tanh() hyperbolic tangent isinf() check for infinity isnan() check for not a number Blob manipulation: *blob-functions* blob2list() get a list of numbers from a blob list2blob() get a blob from a list of numbers Other computation: *bitwise-function* and() bitwise AND invert() bitwise invert or() bitwise OR xor() bitwise XOR sha256() SHA-256 hash rand() get a pseudo-random number srand() initialize seed used by rand() Variables: *var-functions* type() type of a variable as a number typename() type of a variable as text islocked() check if a variable is locked funcref() get a Funcref for a function reference function() get a Funcref for a function name getbufvar() get a variable value from a specific buffer setbufvar() set a variable in a specific buffer getwinvar() get a variable from specific window gettabvar() get a variable from specific tab page gettabwinvar() get a variable from specific window & tab page setwinvar() set a variable in a specific window settabvar() set a variable in a specific tab page settabwinvar() set a variable in a specific window & tab page garbagecollect() possibly free memory Cursor and mark position: *cursor-functions* *mark-functions* col() column number of the cursor or a mark virtcol() screen column of the cursor or a mark line() line number of the cursor or mark wincol() window column number of the cursor winline() window line number of the cursor cursor() position the cursor at a line/column screencol() get screen column of the cursor screenrow() get screen row of the cursor screenpos() screen row and col of a text character getcurpos() get position of the cursor getpos() get position of cursor, mark, etc. setpos() set position of cursor, mark, etc. getmarklist() list of global/local marks byte2line() get line number at a specific byte count line2byte() byte count at a specific line diff_filler() get the number of filler lines above a line screenattr() get attribute at a screen line/row screenchar() get character code at a screen line/row screenchars() get character codes at a screen line/row screenstring() get string of characters at a screen line/row charcol() character number of the cursor or a mark getcharpos() get character position of cursor, mark, etc. setcharpos() set character position of cursor, mark, etc. getcursorcharpos() get character position of the cursor setcursorcharpos() set character position of the cursor Working with text in the current buffer: *text-functions* getline() get a line or list of lines from the buffer setline() replace a line in the buffer append() append line or list of lines in the buffer indent() indent of a specific line cindent() indent according to C indenting lispindent() indent according to Lisp indenting nextnonblank() find next non-blank line prevnonblank() find previous non-blank line search() find a match for a pattern searchpos() find a match for a pattern searchcount() get number of matches before/after the cursor searchpair() find the other end of a start/skip/end searchpairpos() find the other end of a start/skip/end searchdecl() search for the declaration of a name getcharsearch() return character search information setcharsearch() set character search information Working with text in another buffer: getbufline() get a list of lines from the specified buffer setbufline() replace a line in the specified buffer appendbufline() append a list of lines in the specified buffer deletebufline() delete lines from a specified buffer *system-functions* *file-functions* System functions and manipulation of files: glob() expand wildcards globpath() expand wildcards in a number of directories glob2regpat() convert a glob pattern into a search pattern findfile() find a file in a list of directories finddir() find a directory in a list of directories resolve() find out where a shortcut points to fnamemodify() modify a file name pathshorten() shorten directory names in a path simplify() simplify a path without changing its meaning executable() check if an executable program exists exepath() full path of an executable program filereadable() check if a file can be read filewritable() check if a file can be written to getfperm() get the permissions of a file setfperm() set the permissions of a file getftype() get the kind of a file isdirectory() check if a directory exists getfsize() get the size of a file getcwd() get the current working directory haslocaldir() check if current window used |:lcd| or |:tcd| tempname() get the name of a temporary file mkdir() create a new directory chdir() change current working directory delete() delete a file rename() rename a file system() get the result of a shell command as a string systemlist() get the result of a shell command as a list environ() get all environment variables getenv() get one environment variable setenv() set an environment variable hostname() name of the system readfile() read a file into a List of lines readblob() read a file into a Blob readdir() get a List of file names in a directory readdirex() get a List of file information in a directory writefile() write a List of lines or Blob into a file Date and Time: *date-functions* *time-functions* getftime() get last modification time of a file localtime() get current time in seconds strftime() convert time to a string strptime() convert a date/time string to time reltime() get the current or elapsed time accurately reltimestr() convert reltime() result to a string reltimefloat() convert reltime() result to a Float *buffer-functions* *window-functions* *arg-functions* Buffers, windows and the argument list: argc() number of entries in the argument list argidx() current position in the argument list arglistid() get id of the argument list argv() get one entry from the argument list bufadd() add a file to the list of buffers bufexists() check if a buffer exists buflisted() check if a buffer exists and is listed bufload() ensure a buffer is loaded bufloaded() check if a buffer exists and is loaded bufname() get the name of a specific buffer bufnr() get the buffer number of a specific buffer tabpagebuflist() return List of buffers in a tab page tabpagenr() get the number of a tab page tabpagewinnr() like winnr() for a specified tab page winnr() get the window number for the current window bufwinid() get the window ID of a specific buffer bufwinnr() get the window number of a specific buffer winbufnr() get the buffer number of a specific window listener_add() add a callback to listen to changes listener_flush() invoke listener callbacks listener_remove() remove a listener callback win_findbuf() find windows containing a buffer win_getid() get window ID of a window win_gettype() get type of window win_gotoid() go to window with ID win_id2tabwin() get tab and window nr from window ID win_id2win() get window nr from window ID win_splitmove() move window to a split of another window getbufinfo() get a list with buffer information gettabinfo() get a list with tab page information getwininfo() get a list with window information getchangelist() get a list of change list entries getjumplist() get a list of jump list entries swapinfo() information about a swap file swapname() get the swap file path of a buffer Command line: *command-line-functions* getcmdline() get the current command line getcmdpos() get position of the cursor in the command line setcmdpos() set position of the cursor in the command line getcmdtype() return the current command-line type getcmdwintype() return the current command-line window type getcompletion() list of command-line completion matches fullcommand() get full command name Quickfix and location lists: *quickfix-functions* getqflist() list of quickfix errors setqflist() modify a quickfix list getloclist() list of location list items setloclist() modify a location list Insert mode completion: *completion-functions* complete() set found matches complete_add() add to found matches complete_check() check if completion should be aborted complete_info() get current completion information pumvisible() check if the popup menu is displayed pum_getpos() position and size of popup menu if visible Folding: *folding-functions* foldclosed() check for a closed fold at a specific line foldclosedend() like foldclosed() but return the last line foldlevel() check for the fold level at a specific line foldtext() generate the line displayed for a closed fold foldtextresult() get the text displayed for a closed fold Syntax and highlighting: *syntax-functions* *highlighting-functions* clearmatches() clear all matches defined by |matchadd()| and the |:match| commands getmatches() get all matches defined by |matchadd()| and the |:match| commands hlexists() check if a highlight group exists hlget() get highlight group attributes hlset() set highlight group attributes hlID() get ID of a highlight group synID() get syntax ID at a specific position synIDattr() get a specific attribute of a syntax ID synIDtrans() get translated syntax ID synstack() get list of syntax IDs at a specific position synconcealed() get info about concealing diff_hlID() get highlight ID for diff mode at a position matchadd() define a pattern to highlight (a "match") matchaddpos() define a list of positions to highlight matcharg() get info about |:match| arguments matchdelete() delete a match defined by |matchadd()| or a |:match| command setmatches() restore a list of matches saved by |getmatches()| Spelling: *spell-functions* spellbadword() locate badly spelled word at or after cursor spellsuggest() return suggested spelling corrections soundfold() return the sound-a-like equivalent of a word History: *history-functions* histadd() add an item to a history histdel() delete an item from a history histget() get an item from a history histnr() get highest index of a history list Interactive: *interactive-functions* browse() put up a file requester browsedir() put up a directory requester confirm() let the user make a choice getchar() get a character from the user getcharstr() get a character from the user as a string getcharmod() get modifiers for the last typed character getmousepos() get last known mouse position echoraw() output characters as-is feedkeys() put characters in the typeahead queue input() get a line from the user inputlist() let the user pick an entry from a list inputsecret() get a line from the user without showing it inputdialog() get a line from the user in a dialog inputsave() save and clear typeahead inputrestore() restore typeahead GUI: *gui-functions* getfontname() get name of current font being used getwinpos() position of the Vim window getwinposx() X position of the Vim window getwinposy() Y position of the Vim window balloon_show() set the balloon content balloon_split() split a message for a balloon balloon_gettext() get the text in the balloon Vim server: *server-functions* serverlist() return the list of server names remote_startserver() run a server remote_send() send command characters to a Vim server remote_expr() evaluate an expression in a Vim server server2client() send a reply to a client of a Vim server remote_peek() check if there is a reply from a Vim server remote_read() read a reply from a Vim server foreground() move the Vim window to the foreground remote_foreground() move the Vim server window to the foreground Window size and position: *window-size-functions* winheight() get height of a specific window winwidth() get width of a specific window win_screenpos() get screen position of a window winlayout() get layout of windows in a tab page winrestcmd() return command to restore window sizes winsaveview() get view of current window winrestview() restore saved view of current window Mappings and Menus: *mapping-functions* digraph_get() get |digraph| digraph_getlist() get all |digraph|s digraph_set() register |digraph| digraph_setlist() register multiple |digraph|s hasmapto() check if a mapping exists mapcheck() check if a matching mapping exists maparg() get rhs of a mapping mapset() restore a mapping menu_info() get information about a menu item wildmenumode() check if the wildmode is active Testing: *test-functions* assert_equal() assert that two expressions values are equal assert_equalfile() assert that two file contents are equal assert_notequal() assert that two expressions values are not equal assert_inrange() assert that an expression is inside a range assert_match() assert that a pattern matches the value assert_notmatch() assert that a pattern does not match the value assert_false() assert that an expression is false assert_true() assert that an expression is true assert_exception() assert that a command throws an exception assert_beeps() assert that a command beeps assert_nobeep() assert that a command does not cause a beep assert_fails() assert that a command fails assert_report() report a test failure test_alloc_fail() make memory allocation fail test_autochdir() enable 'autochdir' during startup test_override() test with Vim internal overrides test_garbagecollect_now() free memory right now test_garbagecollect_soon() set a flag to free memory soon test_getvalue() get value of an internal variable test_gui_drop_files() drop file(s) in a window test_gui_mouse_event() add a GUI mouse event to the input buffer test_ignore_error() ignore a specific error message test_null_blob() return a null Blob test_null_channel() return a null Channel test_null_dict() return a null Dict test_null_function() return a null Funcref test_null_job() return a null Job test_null_list() return a null List test_null_partial() return a null Partial function test_null_string() return a null String test_settime() set the time Vim uses internally test_setmouse() set the mouse position test_feedinput() add key sequence to input buffer test_option_not_set() reset flag indicating option was set test_scrollbar() simulate scrollbar movement in the GUI test_refcount() return an expression's reference count test_srand_seed() set the seed value for srand() test_unknown() return a value with unknown type test_void() return a value with void type Inter-process communication: *channel-functions* ch_canread() check if there is something to read ch_open() open a channel ch_close() close a channel ch_close_in() close the in part of a channel ch_read() read a message from a channel ch_readblob() read a Blob from a channel ch_readraw() read a raw message from a channel ch_sendexpr() send a JSON message over a channel ch_sendraw() send a raw message over a channel ch_evalexpr() evaluate an expression over channel ch_evalraw() evaluate a raw string over channel ch_status() get status of a channel ch_getbufnr() get the buffer number of a channel ch_getjob() get the job associated with a channel ch_info() get channel information ch_log() write a message in the channel log file ch_logfile() set the channel log file ch_setoptions() set the options for a channel json_encode() encode an expression to a JSON string json_decode() decode a JSON string to Vim types js_encode() encode an expression to a JSON string js_decode() decode a JSON string to Vim types Jobs: *job-functions* job_start() start a job job_stop() stop a job job_status() get the status of a job job_getchannel() get the channel used by a job job_info() get information about a job job_setoptions() set options for a job Signs: *sign-functions* sign_define() define or update a sign sign_getdefined() get a list of defined signs sign_getplaced() get a list of placed signs sign_jump() jump to a sign sign_place() place a sign sign_placelist() place a list of signs sign_undefine() undefine a sign sign_unplace() unplace a sign sign_unplacelist() unplace a list of signs Terminal window: *terminal-functions* term_start() open a terminal window and run a job term_list() get the list of terminal buffers term_sendkeys() send keystrokes to a terminal term_wait() wait for screen to be updated term_getjob() get the job associated with a terminal term_scrape() get row of a terminal screen term_getline() get a line of text from a terminal term_getattr() get the value of attribute {what} term_getcursor() get the cursor position of a terminal term_getscrolled() get the scroll count of a terminal term_getaltscreen() get the alternate screen flag term_getsize() get the size of a terminal term_getstatus() get the status of a terminal term_gettitle() get the title of a terminal term_gettty() get the tty name of a terminal term_setansicolors() set 16 ANSI colors, used for GUI term_getansicolors() get 16 ANSI colors, used for GUI term_dumpdiff() display difference between two screen dumps term_dumpload() load a terminal screen dump in a window term_dumpwrite() dump contents of a terminal screen to a file term_setkill() set signal to stop job in a terminal term_setrestore() set command to restore a terminal term_setsize() set the size of a terminal term_setapi() set terminal JSON API function name prefix Popup window: *popup-window-functions* popup_create() create popup centered in the screen popup_atcursor() create popup just above the cursor position, closes when the cursor moves away popup_beval() at the position indicated by v:beval_ variables, closes when the mouse moves away popup_notification() show a notification for three seconds popup_dialog() create popup centered with padding and border popup_menu() prompt for selecting an item from a list popup_hide() hide a popup temporarily popup_show() show a previously hidden popup popup_move() change the position and size of a popup popup_setoptions() override options of a popup popup_settext() replace the popup buffer contents popup_close() close one popup popup_clear() close all popups popup_filter_menu() select from a list of items popup_filter_yesno() block until 'y' or 'n' is pressed popup_getoptions() get current options for a popup popup_getpos() get actual position and size of a popup popup_findinfo() get window ID for popup info window popup_findpreview() get window ID for popup preview window popup_list() get list of all popup window IDs popup_locate() get popup window ID from its screen position Timers: *timer-functions* timer_start() create a timer timer_pause() pause or unpause a timer timer_stop() stop a timer timer_stopall() stop all timers timer_info() get information about timers Tags: *tag-functions* taglist() get list of matching tags tagfiles() get a list of tags files gettagstack() get the tag stack of a window settagstack() modify the tag stack of a window Prompt Buffer: *promptbuffer-functions* prompt_getprompt() get the effective prompt text for a buffer prompt_setcallback() set prompt callback for a buffer prompt_setinterrupt() set interrupt callback for a buffer prompt_setprompt() set the prompt text for a buffer Text Properties: *text-property-functions* prop_add() attach a property at a position prop_add_list() attach a property at multiple positions prop_clear() remove all properties from a line or lines prop_find() search for a property prop_list() return a list of all properties in a line prop_remove() remove a property from a line prop_type_add() add/define a property type prop_type_change() change properties of a type prop_type_delete() remove a text property type prop_type_get() return the properties of a type prop_type_list() return a list of all property types Sound: *sound-functions* sound_clear() stop playing all sounds sound_playevent() play an event's sound sound_playfile() play a sound file sound_stop() stop playing a sound Various: *various-functions* mode() get current editing mode state() get current busy state visualmode() last visual mode used exists() check if a variable, function, etc. exists exists_compiled() like exists() but check at compile time has() check if a feature is supported in Vim changenr() return number of most recent change cscope_connection() check if a cscope connection exists did_filetype() check if a FileType autocommand was used eventhandler() check if invoked by an event handler getpid() get process ID of Vim getimstatus() check if IME status is active interrupt() interrupt script execution windowsversion() get MS-Windows version terminalprops() properties of the terminal libcall() call a function in an external library libcallnr() idem, returning a number undofile() get the name of the undo file undotree() return the state of the undo tree getreg() get contents of a register getreginfo() get information about a register getregtype() get type of a register setreg() set contents and type of a register reg_executing() return the name of the register being executed reg_recording() return the name of the register being recorded shiftwidth() effective value of 'shiftwidth' wordcount() get byte/word/char count of buffer luaeval() evaluate |Lua| expression mzeval() evaluate |MzScheme| expression perleval() evaluate Perl expression (|+perl|) py3eval() evaluate Python expression (|+python3|) pyeval() evaluate Python expression (|+python|) pyxeval() evaluate |python_x| expression rubyeval() evaluate |Ruby| expression debugbreak() interrupt a program being debugged ============================================================================== *41.7* Defining a function Vim enables you to define your own functions. The basic function declaration begins as follows: > def {name}({var1}, {var2}, ...): return-type {body} enddef < Note: Function names must begin with a capital letter. Let's define a short function to return the smaller of two numbers. It starts with this line: > def Min(num1: number, num2: number): number This tells Vim that the function is named "Min", it takes two arguments that are numbers: "num1" and "num2" and returns a number. The first thing you need to do is to check to see which number is smaller: > if num1 < num2 Let's assign the variable "smaller" the value of the smallest number: > var smaller: number if num1 < num2 smaller = num1 else smaller = num2 endif The variable "smaller" is a local variable. Variables used inside a function are local unless prefixed by something like "g:", "w:", or "s:". Note: To access a global variable from inside a function you must prepend "g:" to it. Thus "g:today" inside a function is used for the global variable "today", and "today" is another variable, local to the function or the script. You now use the `return` statement to return the smallest number to the user. Finally, you end the function: > return smaller enddef The complete function definition is as follows: > def Min(num1: number, num2: number): number var smaller: number if num1 < num2 smaller = num1 else smaller = num2 endif return smaller enddef Obviously this is a verbose example. You can make it shorter by using two return commands: > def Min(num1: number, num2: number): number if num1 < num2 return num1 endif return num2 enddef And if you remember the conditional expression, you need only one line: > def Min(num1: number, num2: number): number return num1 < num2 ? num1 : num2 enddef A user defined function is called in exactly the same way as a built-in function. Only the name is different. The Min function can be used like this: > echo Min(5, 8) Only now will the function be executed and the lines be parsed by Vim. If there are mistakes, like using an undefined variable or function, you will now get an error message. When defining the function these errors are not detected. To get the errors sooner you can tell Vim to compile all the functions in the script: > defcompile For a function that does not return anything leave out the return type: > def SayIt(text: string) echo text enddef It is also possible to define a legacy function with `function` and `endfunction`. These do not have types and are not compiled. They execute much slower. USING A RANGE A line range can be used with a function call. The function will be called once for every line in the range, with the cursor in that line. Example: > def Number() echo "line " .. line(".") .. " contains: " .. getline(".") enddef If you call this function with: > :10,15call Number() The function will be called six times, starting on line 10 and ending on line 15. VARIABLE NUMBER OF ARGUMENTS Vim enables you to define functions that have a variable number of arguments. The following command, for instance, defines a function that must have 1 argument (start) and can have up to 20 additional arguments: > def Show(start: string, ...items: list<string>) The variable "items" will be a list containing the extra arguments. You can use it like any list, for example: > def Show(start: string, ...items: list<string>) echohl Title echo "start is " .. start echohl None for index in range(len(items)) echon " Arg " .. index .. " is " .. items[index] endfor echo enddef You can call it like this: > Show('Title', 'one', 'two', 'three') < start is Title Arg 0 is one Arg 1 is two Arg 2 is three ~ This uses the `echohl` command to specify the highlighting used for the following `echo` command. `echohl None` stops it again. The `echon` command works like `echo`, but doesn't output a line break. If you call it with one argument the "items" list will be empty. `range(len(items))` returns a list with the indexes, what `for` loops over, we'll explain that further down. LISTING FUNCTIONS The `function` command lists the names and arguments of all user-defined functions: > :function < def <SNR>86_Show(start: string, ...items: list<string>) ~ function GetVimIndent() ~ function SetSyn(name) ~ The "<SNR>" prefix means that a function is script-local. |Vim9| functions wil start with "def" and include argument and return types. Legacy functions are listed with "function". To see what a function does, use its name as an argument for `function`: > :function SetSyn < 1 if &syntax == '' ~ 2 let &syntax = a:name ~ 3 endif ~ endfunction ~ To see the "Show" function you need to include the script prefix, since a "Show" function can be defined multiple times in different scripts. To find the exact name you can use `function`, but the result may be a very long list. To only get the functions matching a pattern you can use the `filter` prefix: > :filter Show function < def <SNR>86_Show(start: string, ...items: list<string>) ~ > :function <SNR>86_Show < 1 echohl Title ~ 2 echo "start is " .. start ~ etc. DEBUGGING The line number is useful for when you get an error message or when debugging. See |debug-scripts| about debugging mode. You can also set the 'verbose' option to 12 or higher to see all function calls. Set it to 15 or higher to see every executed line. DELETING A FUNCTION To delete the SetSyn() function: > :delfunction SetSyn Deleting only works for global functions and functions in legacy script, not for functions defined in a |Vim9| script. You get an error when the function doesn't exist or cannot be deleted. FUNCTION REFERENCES Sometimes it can be useful to have a variable point to one function or another. You can do it with function reference variable. Often shortened to "funcref". Example: > def Right() return 'Right!' enddef def Wrong() return 'Wrong!' enddef var Afunc = g:result == 1 ? Right : Wrong Afunc() < Wrong! ~ This assumes "g:result" is not one. Note that the name of a variable that holds a function reference must start with a capital. Otherwise it could be confused with the name of a builtin function. More information about defining your own functions here: |user-functions|. ============================================================================== *41.8* Lists and Dictionaries So far we have used the basic types String and Number. Vim also supports two composite types: List and Dictionary. A List is an ordered sequence of items. The items can be any kind of value, thus you can make a List of numbers, a List of Lists and even a List of mixed items. To create a List with three strings: > var alist = ['aap', 'mies', 'noot'] The List items are enclosed in square brackets and separated by commas. To create an empty List: > var alist = [] You can add items to a List with the add() function: > var alist = [] add(alist, 'foo') add(alist, 'bar') echo alist < ['foo', 'bar'] ~ List concatenation is done with +: > var alist = ['foo', 'bar'] alist = alist + ['and', 'more'] echo alist < ['foo', 'bar', 'and', 'more'] ~ Or, if you want to extend a List with a function: > var alist = ['one'] extend(alist, ['two', 'three']) echo alist < ['one', 'two', 'three'] ~ Notice that using `add()` will have a different effect: > var alist = ['one'] add(alist, ['two', 'three']) echo alist < ['one', ['two', 'three']] ~ The second argument of add() is added as an item, now you have a nested list. FOR LOOP One of the nice things you can do with a List is iterate over it: > var alist = ['one', 'two', 'three'] for n in alist echo n endfor < one ~ two ~ three ~ This will loop over each element in List "alist", assigning each value to variable "n". The generic form of a for loop is: > for {varname} in {listexpression} {commands} endfor To loop a certain number of times you need a List of a specific length. The range() function creates one for you: > for a in range(3) echo a endfor < 0 ~ 1 ~ 2 ~ Notice that the first item of the List that range() produces is zero, thus the last item is one less than the length of the list. You can also specify the maximum value, the stride and even go backwards: > for a in range(8, 4, -2) echo a endfor < 8 ~ 6 ~ 4 ~ A more useful example, looping over lines in the buffer: > for line in getline(1, 20) if line =~ "Date: " echo line endif endfor This looks into lines 1 to 20 (inclusive) and echoes any date found in there. DICTIONARIES A Dictionary stores key-value pairs. You can quickly lookup a value if you know the key. A Dictionary is created with curly braces: > var uk2nl = {one: 'een', two: 'twee', three: 'drie'} Now you can lookup words by putting the key in square brackets: > echo uk2nl['two'] < twee ~ If the key does not have special characters, you can use the dot notation: > echo uk2nl.two < twee ~ The generic form for defining a Dictionary is: > {<key> : <value>, ...} An empty Dictionary is one without any keys: > {} The possibilities with Dictionaries are numerous. There are various functions for them as well. For example, you can obtain a list of the keys and loop over them: > for key in keys(uk2nl) echo key endfor < three ~ one ~ two ~ You will notice the keys are not ordered. You can sort the list to get a specific order: > for key in sort(keys(uk2nl)) echo key endfor < one ~ three ~ two ~ But you can never get back the order in which items are defined. For that you need to use a List, it stores items in an ordered sequence. For further reading see |Lists| and |Dictionaries|. ============================================================================== *41.9* Exceptions Let's start with an example: > try read ~/templates/pascal.tmpl catch /E484:/ echo "Sorry, the Pascal template file cannot be found." endtry The `read` command will fail if the file does not exist. Instead of generating an error message, this code catches the error and gives the user a nice message. For the commands in between `try` and `endtry` errors are turned into exceptions. An exception is a string. In the case of an error the string contains the error message. And every error message has a number. In this case, the error we catch contains "E484:". This number is guaranteed to stay the same (the text may change, e.g., it may be translated). Besides being able to give a nice error message, Vim will also continue executing commands. Otherwise, once an uncaught error is encountered, execution will be aborted. When the `read` command causes another error, the pattern "E484:" will not match in it. Thus this exception will not be caught and result in the usual error message. You might be tempted to do this: > try read ~/templates/pascal.tmpl catch echo "Sorry, the Pascal template file cannot be found." endtry This means all errors are caught. But then you will not see an error that would indicate a completely different problem, such as "E21: Cannot make changes, 'modifiable' is off". Another useful mechanism is the `finally` command: > var tmp = tempname() try exe ":.,$write " .. tmp exe "!filter " .. tmp :.,$delete exe ":$read " .. tmp finally call delete(tmp) endtry This filters the lines from the cursor until the end of the file through the "filter" command, which takes a file name argument. No matter if the filtering works, something goes wrong in between `try` and `finally` or the user cancels the filtering by pressing CTRL-C, the `call delete(tmp)` is always executed. This makes sure you don't leave the temporary file behind. More information about exception handling can be found in the reference manual: |exception-handling|. ============================================================================== *41.10* Various remarks Here is a summary of items that are useful to know when writing Vim scripts. The end-of-line character depends on the system. For Vim scripts it is recommended to always use the Unix fileformat, this also works on any other system. That way you can copy your Vim scripts from MS-Windows to Unix and they still work. See |:source_crnl|. To be sure it is set right, do this before writing the file: > :setlocal fileformat=unix WHITE SPACE Blank lines are allowed and ignored. Leading whitespace characters (blanks and TABs) are always ignored. Trailing whitespace is often ignored, but not always. One command that includes it is `map`. To include a whitespace character in the value of an option, it must be escaped by a "\" (backslash) as in the following example: > :set tags=my\ nice\ file The same example written as: > :set tags=my nice file will issue an error, because it is interpreted as: > :set tags=my :set nice :set file |Vim9| script is very picky when it comes to white space. This was done intentionally to make sure scripts are easy to read and to avoid mistakes. COMMENTS In |Vim9| script the character # starts a comment. Everything after and including this character until the end-of-line is considered a comment and is ignored, except for commands that don't consider comments, as shown in examples below. A comment can start on any character position on the line, but not when it is part of the command, e.g. in a string. The character " (the double quote mark) starts a comment in legacy script. There is a little "catch" with comments for some commands. Examples: > abbrev dev development # shorthand map <F3> o#include # insert include execute cmd # do it !ls *.c # list C files The abbreviation 'dev' will be expanded to 'development # shorthand'. The mapping of <F3> will actually be the whole line after the 'o# ....' including the '# insert include'. The `execute` command will give an error. The `!` command will send everything after it to the shell, most likely causing an error. There can be no comment after `map`, `abbreviate`, `execute` and `!` commands (there are a few more commands with this restriction). For the `map`, `abbreviate` and `execute` commands there is a trick: > abbrev dev development|# shorthand map <F3> o#include|# insert include execute '!ls *.c' |# do it With the '|' character the command is separated from the next one. And that next command is only a comment. The last command, using `execute` is a general solution, it works for all commands that do not accept a comment or a '|' to separate the next command. Notice that there is no white space before the '|' in the abbreviation and mapping. For these commands, any character until the end-of-line or '|' is included. As a consequence of this behavior, you don't always see that trailing whitespace is included: > map <F4> o#include To spot these problems, you can highlight trailing spaces: > match Search /\s\+$/ For Unix there is one special way to comment a line, that allows making a Vim script executable, and it also works in legacy script: > #!/usr/bin/env vim -S echo "this is a Vim script" quit PITFALLS An even bigger problem arises in the following example: > map ,ab o#include unmap ,ab Here the unmap command will not work, because it tries to unmap ",ab ". This does not exist as a mapped sequence. An error will be issued, which is very hard to identify, because the ending whitespace character in `unmap ,ab ` is not visible. And this is the same as what happens when one uses a comment after an 'unmap' command: > unmap ,ab # comment Here the comment part will be ignored. However, Vim will try to unmap ',ab ', which does not exist. Rewrite it as: > unmap ,ab| # comment RESTORING THE VIEW Sometimes you want to make a change and go back to where the cursor was. Restoring the relative position would also be nice, so that the same line appears at the top of the window. This example yanks the current line, puts it above the first line in the file and then restores the view: > map ,p ma"aYHmbgg"aP`bzt`a What this does: > ma"aYHmbgg"aP`bzt`a < ma set mark a at cursor position "aY yank current line into register a Hmb go to top line in window and set mark b there gg go to first line in file "aP put the yanked line above it `b go back to top line in display zt position the text in the window as before `a go back to saved cursor position PACKAGING Sometimes you will want to use global variables or functions, so that they can be used anywhere. A good example is a global variable that passes a preference to a plugin. To avoid other scripts using the same name, use a prefix that is very unlikely to be used elsewhere. For example, if you have a "mytags" plugin, you could use: > g:mytags_location = '$HOME/project' g:mytags_style = 'fast' To minimize interference between plugins keep as much as possible local to the script. |Vim9| script helps you with that, by default functions and variables are script-local. If you split your plugin into parts, you can use `import` and `export` to share items between those parts. See `:export` for the details. ============================================================================== *41.11* Writing a plugin *write-plugin* You can write a Vim script in such a way that many people can use it. This is called a plugin. Vim users can drop your script in their plugin directory and use its features right away |add-plugin|. There are actually two types of plugins: global plugins: For all types of files. filetype plugins: Only for files of a specific type. In this section the first type is explained. Most items are also relevant for writing filetype plugins. The specifics for filetype plugins are in the next section |write-filetype-plugin|. NAME First of all you must choose a name for your plugin. The features provided by the plugin should be clear from its name. And it should be unlikely that someone else writes a plugin with the same name but which does something different. A script that corrects typing mistakes could be called "typecorrect.vim". We will use it here as an example. For the plugin to work for everybody, it should follow a few guidelines. This will be explained step-by-step. The complete example plugin is at the end. BODY Let's start with the body of the plugin, the lines that do the actual work: > 14 iabbrev teh the 15 iabbrev otehr other 16 iabbrev wnat want 17 iabbrev synchronisation 18 \ synchronization The actual list should be much longer, of course. The line numbers have only been added to explain a few things, don't put them in your plugin file! FIRST LINE > 1 vim9script noclear You need to use `vimscript` as the very first command. Best is to put it in the very first line. The script we are writing will have a `finish` command to bail out when it is loaded a second time. To avoid the items defined in the script are lost the "noclear" argument is used. More info about this at |vim9-reload|. HEADER You will probably add new corrections to the plugin and soon have several versions lying around. And when distributing this file, people will want to know who wrote this wonderful plugin and where they can send remarks. Therefore, put a header at the top of your plugin: > 2 # Vim global plugin for correcting typing mistakes 3 # Last Change: 2021 Dec 30 4 # Maintainer: Bram Moolenaar <Bram@vim.org> About copyright and licensing: Since plugins are very useful and it's hardly worth restricting their distribution, please consider making your plugin either public domain or use the Vim |license|. A short note about this near the top of the plugin should be sufficient. Example: > 5 # License: This file is placed in the public domain. LINE CONTINUATION AND AVOIDING SIDE EFFECTS *use-cpo-save* In line 18 above, the line-continuation mechanism is used |line-continuation|. Users with 'compatible' set will run into trouble here, they will get an error message. We can't just reset 'compatible', because that has a lot of side effects. Instead, we will set the 'cpoptions' option to its Vim default value and restore it later. That will allow the use of line-continuation and make the script work for most people. It is done like this: > 11 var save_cpo = &cpo 12 set cpo&vim .. 42 &cpo = save_cpo We first store the old value of 'cpoptions' in the "save_cpo" variable. At the end of the plugin this value is restored. Notice that "save_cpo" is a script-local variable. A global variable could already be in use for something else. Always use script-local variables for things that are only used in the script. NOT LOADING It is possible that a user doesn't always want to load this plugin. Or the system administrator has dropped it in the system-wide plugin directory, but a user has his own plugin he wants to use. Then the user must have a chance to disable loading this specific plugin. These lines will make it possible: > 7 if exists("g:loaded_typecorrect") 8 finish 9 endif 10 g:loaded_typecorrect = 1 This also avoids that when the script is loaded twice it would pointlessly redefine functions and cause trouble for autocommands that are added twice. The name is recommended to start with "g:loaded_" and then the file name of the plugin, literally. The "g:" is prepended to make the variable global, so that other places can check whether its functionality is available. Without "g:" it would be local to the script. Using `finish` stops Vim from reading the rest of the file, it's much quicker than using if-endif around the whole file, since Vim would still need to parse the commands to find the `endif`. MAPPING Now let's make the plugin more interesting: We will add a mapping that adds a correction for the word under the cursor. We could just pick a key sequence for this mapping, but the user might already use it for something else. To allow the user to define which keys a mapping in a plugin uses, the <Leader> item can be used: > 22 map <unique> <Leader>a <Plug>TypecorrAdd; The "<Plug>TypecorrAdd;" thing will do the work, more about that further on. The user can set the "g:mapleader" variable to the key sequence that he wants plugin mappings to start with. Thus if the user has done: > g:mapleader = "_" the mapping will define "_a". If the user didn't do this, the default value will be used, which is a backslash. Then a map for "\a" will be defined. Note that <unique> is used, this will cause an error message if the mapping already happened to exist. |:map-<unique>| But what if the user wants to define his own key sequence? We can allow that with this mechanism: > 21 if !hasmapto('<Plug>TypecorrAdd;') 22 map <unique> <Leader>a <Plug>TypecorrAdd; 23 endif This checks if a mapping to "<Plug>TypecorrAdd;" already exists, and only defines the mapping from "<Leader>a" if it doesn't. The user then has a chance of putting this in his vimrc file: > map ,c <Plug>TypecorrAdd; Then the mapped key sequence will be ",c" instead of "_a" or "\a". PIECES If a script gets longer, you often want to break up the work in pieces. You can use functions or mappings for this. But you don't want these functions and mappings to interfere with the ones from other scripts. For example, you could define a function Add(), but another script could try to define the same function. To avoid this, we define the function local to the script. Fortunately, in |Vim9| script this is the default. In a legacy script you would need to prefix the name with "s:". We will define a function that adds a new typing correction: > 30 def Add(from: string, correct: bool) 31 var to = input("type the correction for " .. from .. ": ") 32 exe ":iabbrev " .. from .. " " .. to .. 36 enddef Now we can call the function Add() from within this script. If another script also defines Add(), it will be local to that script and can only be called from that script. There can also be a global g:Add() function, which is again another function. <SID> can be used with mappings. It generates a script ID, which identifies the current script. In our typing correction plugin we use it like this: > 24 noremap <unique> <script> <Plug>TypecorrAdd; <SID>Add .. 28 noremap <SID>Add :call <SID>Add(expand("<cword>"), true)<CR> Thus when a user types "\a", this sequence is invoked: > \a -> <Plug>TypecorrAdd; -> <SID>Add -> :call <SID>Add(...) If another script also maps <SID>Add, it will get another script ID and thus define another mapping. Note that instead of Add() we use <SID>Add() here. That is because the mapping is typed by the user, thus outside of the script context. The <SID> is translated to the script ID, so that Vim knows in which script to look for the Add() function. This is a bit complicated, but it's required for the plugin to work together with other plugins. The basic rule is that you use <SID>Add() in mappings and Add() in other places (the script itself, autocommands, user commands). We can also add a menu entry to do the same as the mapping: > 26 noremenu <script> Plugin.Add\ Correction <SID>Add The "Plugin" menu is recommended for adding menu items for plugins. In this case only one item is used. When adding more items, creating a submenu is recommended. For example, "Plugin.CVS" could be used for a plugin that offers CVS operations "Plugin.CVS.checkin", "Plugin.CVS.checkout", etc. Note that in line 28 ":noremap" is used to avoid that any other mappings cause trouble. Someone may have remapped ":call", for example. In line 24 we also use ":noremap", but we do want "<SID>Add" to be remapped. This is why "<script>" is used here. This only allows mappings which are local to the script. |:map-<script>| The same is done in line 26 for ":noremenu". |:menu-<script>| <SID> AND <Plug> *using-<Plug>* Both <SID> and <Plug> are used to avoid that mappings of typed keys interfere with mappings that are only to be used from other mappings. Note the difference between using <SID> and <Plug>: <Plug> is visible outside of the script. It is used for mappings which the user might want to map a key sequence to. <Plug> is a special code that a typed key will never produce. To make it very unlikely that other plugins use the same sequence of characters, use this structure: <Plug> scriptname mapname In our example the scriptname is "Typecorr" and the mapname is "Add". We add a semicolon as the terminator. This results in "<Plug>TypecorrAdd;". Only the first character of scriptname and mapname is uppercase, so that we can see where mapname starts. <SID> is the script ID, a unique identifier for a script. Internally Vim translates <SID> to "<SNR>123_", where "123" can be any number. Thus a function "<SID>Add()" will have a name "<SNR>11_Add()" in one script, and "<SNR>22_Add()" in another. You can see this if you use the ":function" command to get a list of functions. The translation of <SID> in mappings is exactly the same, that's how you can call a script-local function from a mapping. USER COMMAND Now let's add a user command to add a correction: > 38 if !exists(":Correct") 39 command -nargs=1 Correct :call Add(<q-args>, false) 40 endif The user command is defined only if no command with the same name already exists. Otherwise we would get an error here. Overriding the existing user command with ":command!" is not a good idea, this would probably make the user wonder why the command he defined himself doesn't work. |:command| If it did happen you can find out who to blame with: > verbose command Correct SCRIPT VARIABLES When a variable starts with "s:" it is a script variable. It can only be used inside a script. Outside the script it's not visible. This avoids trouble with using the same variable name in different scripts. The variables will be kept as long as Vim is running. And the same variables are used when sourcing the same script again. |s:var| The nice thing about |Vim9| script is that variables are local to the script by default. You can prepend "s:" if you like, but you do not need to. And functions in the script can also use the script variables without a prefix. Script-local variables can also be used in functions, autocommands and user commands that are defined in the script. Thus they are the perfect way to share information between parts of your plugin, without it leaking out. In our example we can add a few lines to count the number of corrections: > 19 var count = 4 .. 30 def Add(from: string, correct: bool) .. 34 count += 1 35 echo "you now have " .. count .. " corrections" 36 enddef "count" is declared and initialized to 4 in the script itself. When later the Add() function is called, it increments "count". It doesn't matter from where the function was called, since it has been defined in the script, it will use the local variables from this script. THE RESULT Here is the resulting complete example: > 1 vim9script noclear 2 # Vim global plugin for correcting typing mistakes 3 # Last Change: 2021 Dec 30 4 # Maintainer: Bram Moolenaar <Bram@vim.org> 5 # License: This file is placed in the public domain. 6 7 if exists("g:loaded_typecorrect") 8 finish 9 endif 10 g:loaded_typecorrect = 1 11 var save_cpo = &cpo 12 set cpo&vim 13 14 iabbrev teh the 15 iabbrev otehr other 16 iabbrev wnat want 17 iabbrev synchronisation 18 \ synchronization 19 var count = 4 20 21 if !hasmapto('<Plug>TypecorrAdd;') 22 map <unique> <Leader>a <Plug>TypecorrAdd; 23 endif 24 noremap <unique> <script> <Plug>TypecorrAdd; <SID>Add 25 26 noremenu <script> Plugin.Add\ Correction <SID>Add 27 28 noremap <SID>Add :call <SID>Add(expand("<cword>"), true)<CR> 29 30 def Add(from: string, correct: bool) 31 var to = input("type the correction for " .. from .. ": ") 32 exe ":iabbrev " .. from .. " " .. to 33 if correct | exe "normal viws\<C-R>\" \b\e" | endif 34 count += 1 35 echo "you now have " .. count .. " corrections" 36 enddef 37 38 if !exists(":Correct") 39 command -nargs=1 Correct call Add(<q-args>, false) 40 endif 41 42 &cpo = save_cpo Line 33 wasn't explained yet. It applies the new correction to the word under the cursor. The |:normal| command is used to use the new abbreviation. Note that mappings and abbreviations are expanded here, even though the function was called from a mapping defined with ":noremap". DOCUMENTATION *write-local-help* It's a good idea to also write some documentation for your plugin. Especially when its behavior can be changed by the user. See |add-local-help| for how they are installed. Here is a simple example for a plugin help file, called "typecorrect.txt": > 1 *typecorrect.txt* Plugin for correcting typing mistakes 2 3 If you make typing mistakes, this plugin will have them corrected 4 automatically. 5 6 There are currently only a few corrections. Add your own if you like. 7 8 Mappings: 9 <Leader>a or <Plug>TypecorrAdd; 10 Add a correction for the word under the cursor. 11 12 Commands: 13 :Correct {word} 14 Add a correction for {word}. 15 16 *typecorrect-settings* 17 This plugin doesn't have any settings. The first line is actually the only one for which the format matters. It will be extracted from the help file to be put in the "LOCAL ADDITIONS:" section of help.txt |local-additions|. The first "*" must be in the first column of the first line. After adding your help file do ":help" and check that the entries line up nicely. You can add more tags inside ** in your help file. But be careful not to use existing help tags. You would probably use the name of your plugin in most of them, like "typecorrect-settings" in the example. Using references to other parts of the help in || is recommended. This makes it easy for the user to find associated help. FILETYPE DETECTION *plugin-filetype* If your filetype is not already detected by Vim, you should create a filetype detection snippet in a separate file. It is usually in the form of an autocommand that sets the filetype when the file name matches a pattern. Example: > au BufNewFile,BufRead *.foo setlocal filetype=foofoo Write this single-line file as "ftdetect/foofoo.vim" in the first directory that appears in 'runtimepath'. For Unix that would be "~/.vim/ftdetect/foofoo.vim". The convention is to use the name of the filetype for the script name. You can make more complicated checks if you like, for example to inspect the contents of the file to recognize the language. Also see |new-filetype|. SUMMARY *plugin-special* Summary of special things to use in a plugin: var name Variable local to the script. <SID> Script-ID, used for mappings and functions local to the script. hasmapto() Function to test if the user already defined a mapping for functionality the script offers. <Leader> Value of "mapleader", which the user defines as the keys that plugin mappings start with. map <unique> Give a warning if a mapping already exists. noremap <script> Use only mappings local to the script, not global mappings. exists(":Cmd") Check if a user command already exists. ============================================================================== *41.12* Writing a filetype plugin *write-filetype-plugin* *ftplugin* A filetype plugin is like a global plugin, except that it sets options and defines mappings for the current buffer only. See |add-filetype-plugin| for how this type of plugin is used. First read the section on global plugins above |41.11|. All that is said there also applies to filetype plugins. There are a few extras, which are explained here. The essential thing is that a filetype plugin should only have an effect on the current buffer. DISABLING If you are writing a filetype plugin to be used by many people, they need a chance to disable loading it. Put this at the top of the plugin: > # Only do this when not done yet for this buffer if exists("b:did_ftplugin") finish endif b:did_ftplugin = 1 This also needs to be used to avoid that the same plugin is executed twice for the same buffer (happens when using an ":edit" command without arguments). Now users can disable loading the default plugin completely by making a filetype plugin with only these lines: > vim9script b:did_ftplugin = 1 This does require that the filetype plugin directory comes before $VIMRUNTIME in 'runtimepath'! If you do want to use the default plugin, but overrule one of the settings, you can write the different setting in a script: > setlocal textwidth=70 Now write this in the "after" directory, so that it gets sourced after the distributed "vim.vim" ftplugin |after-directory|. For Unix this would be "~/.vim/after/ftplugin/vim.vim". Note that the default plugin will have set "b:did_ftplugin", but it is ignored here. OPTIONS To make sure the filetype plugin only affects the current buffer use the > setlocal command to set options. And only set options which are local to a buffer (see the help for the option to check that). When using `:setlocal` for global options or options local to a window, the value will change for many buffers, and that is not what a filetype plugin should do. When an option has a value that is a list of flags or items, consider using "+=" and "-=" to keep the existing value. Be aware that the user may have changed an option value already. First resetting to the default value and then changing it is often a good idea. Example: > setlocal formatoptions& formatoptions+=ro MAPPINGS To make sure mappings will only work in the current buffer use the > map <buffer> command. This needs to be combined with the two-step mapping explained above. An example of how to define functionality in a filetype plugin: > if !hasmapto('<Plug>JavaImport;') map <buffer> <unique> <LocalLeader>i <Plug>JavaImport; endif noremap <buffer> <unique> <Plug>JavaImport; oimport ""<Left><Esc> |hasmapto()| is used to check if the user has already defined a map to <Plug>JavaImport;. If not, then the filetype plugin defines the default mapping. This starts with |<LocalLeader>|, which allows the user to select the key(s) he wants filetype plugin mappings to start with. The default is a backslash. "<unique>" is used to give an error message if the mapping already exists or overlaps with an existing mapping. |:noremap| is used to avoid that any other mappings that the user has defined interferes. You might want to use ":noremap <script>" to allow remapping mappings defined in this script that start with <SID>. The user must have a chance to disable the mappings in a filetype plugin, without disabling everything. Here is an example of how this is done for a plugin for the mail filetype: > # Add mappings, unless the user didn't want this. if !exists("g:no_plugin_maps") && !exists("g:no_mail_maps") # Quote text by inserting "> " if !hasmapto('<Plug>MailQuote;') vmap <buffer> <LocalLeader>q <Plug>MailQuote; nmap <buffer> <LocalLeader>q <Plug>MailQuote; endif vnoremap <buffer> <Plug>MailQuote; :s/^/> /<CR> nnoremap <buffer> <Plug>MailQuote; :.,$s/^/> /<CR> endif Two global variables are used: |g:no_plugin_maps| disables mappings for all filetype plugins |g:no_mail_maps| disables mappings for the "mail" filetype USER COMMANDS To add a user command for a specific file type, so that it can only be used in one buffer, use the "-buffer" argument to |:command|. Example: > command -buffer Make make %:r.s VARIABLES A filetype plugin will be sourced for each buffer of the type it's for. Local script variables will be shared between all invocations. Use local buffer variables |b:var| if you want a variable specifically for one buffer. FUNCTIONS When defining a function, this only needs to be done once. But the filetype plugin will be sourced every time a file with this filetype will be opened. This construct makes sure the function is only defined once: > if !exists("*Func") def Func(arg) ... enddef endif < UNDO *undo_indent* *undo_ftplugin* When the user does ":setfiletype xyz" the effect of the previous filetype should be undone. Set the b:undo_ftplugin variable to the commands that will undo the settings in your filetype plugin. Example: > b:undo_ftplugin = "setlocal fo< com< tw< commentstring<" \ .. "| unlet b:match_ignorecase b:match_words b:match_skip" Using ":setlocal" with "<" after the option name resets the option to its global value. That is mostly the best way to reset the option value. This does require removing the "C" flag from 'cpoptions' to allow line continuation, as mentioned above |use-cpo-save|. For undoing the effect of an indent script, the b:undo_indent variable should be set accordingly. FILE NAME The filetype must be included in the file name |ftplugin-name|. Use one of these three forms: .../ftplugin/stuff.vim .../ftplugin/stuff_foo.vim .../ftplugin/stuff/bar.vim "stuff" is the filetype, "foo" and "bar" are arbitrary names. SUMMARY *ftplugin-special* Summary of special things to use in a filetype plugin: <LocalLeader> Value of "maplocalleader", which the user defines as the keys that filetype plugin mappings start with. map <buffer> Define a mapping local to the buffer. noremap <script> Only remap mappings defined in this script that start with <SID>. setlocal Set an option for the current buffer only. command -buffer Define a user command local to the buffer. exists("*s:Func") Check if a function was already defined. Also see |plugin-special|, the special things used for all plugins. ============================================================================== *41.13* Writing a compiler plugin *write-compiler-plugin* A compiler plugin sets options for use with a specific compiler. The user can load it with the |:compiler| command. The main use is to set the 'errorformat' and 'makeprg' options. Easiest is to have a look at examples. This command will edit all the default compiler plugins: > next $VIMRUNTIME/compiler/*.vim Type `:next` to go to the next plugin file. There are two special items about these files. First is a mechanism to allow a user to overrule or add to the default file. The default files start with: > if exists("g:current_compiler") finish endif g:current_compiler = "mine" When you write a compiler file and put it in your personal runtime directory (e.g., ~/.vim/compiler for Unix), you set the "current_compiler" variable to make the default file skip the settings. *:CompilerSet* The second mechanism is to use ":set" for ":compiler!" and ":setlocal" for ":compiler". Vim defines the ":CompilerSet" user command for this. However, older Vim versions don't, thus your plugin should define it then. This is an example: > if exists(":CompilerSet") != 2 command -nargs=* CompilerSet setlocal <args> endif CompilerSet errorformat& " use the default 'errorformat' CompilerSet makeprg=nmake When you write a compiler plugin for the Vim distribution or for a system-wide runtime directory, use the mechanism mentioned above. When "current_compiler" was already set by a user plugin nothing will be done. When you write a compiler plugin to overrule settings from a default plugin, don't check "current_compiler". This plugin is supposed to be loaded last, thus it should be in a directory at the end of 'runtimepath'. For Unix that could be ~/.vim/after/compiler. ============================================================================== *41.14* Writing a plugin that loads quickly *write-plugin-quickload* A plugin may grow and become quite long. The startup delay may become noticeable, while you hardly ever use the plugin. Then it's time for a quickload plugin. The basic idea is that the plugin is loaded twice. The first time user commands and mappings are defined that offer the functionality. The second time the functions that implement the functionality are defined. It may sound surprising that quickload means loading a script twice. What we mean is that it loads quickly the first time, postponing the bulk of the script to the second time, which only happens when you actually use it. When you always use the functionality it actually gets slower! This uses a FuncUndefined autocommand. Since Vim 7 there is an alternative: use the |autoload| functionality |41.15|. That will also use |Vim9| script instead of legacy script that is used here. The following example shows how it's done: > " Vim global plugin for demonstrating quick loading " Last Change: 2005 Feb 25 " Maintainer: Bram Moolenaar <Bram@vim.org> " License: This file is placed in the public domain. if !exists("s:did_load") command -nargs=* BNRead call BufNetRead(<f-args>) map <F19> :call BufNetWrite('something')<CR> let s:did_load = 1 exe 'au FuncUndefined BufNet* source ' .. expand('<sfile>') finish endif function BufNetRead(...) echo 'BufNetRead(' .. string(a:000) .. ')' " read functionality here endfunction function BufNetWrite(...) echo 'BufNetWrite(' .. string(a:000) .. ')' " write functionality here endfunction When the script is first loaded "s:did_load" is not set. The commands between the "if" and "endif" will be executed. This ends in a |:finish| command, thus the rest of the script is not executed. The second time the script is loaded "s:did_load" exists and the commands after the "endif" are executed. This defines the (possible long) BufNetRead() and BufNetWrite() functions. If you drop this script in your plugin directory Vim will execute it on startup. This is the sequence of events that happens: 1. The "BNRead" command is defined and the <F19> key is mapped when the script is sourced at startup. A |FuncUndefined| autocommand is defined. The ":finish" command causes the script to terminate early. 2. The user types the BNRead command or presses the <F19> key. The BufNetRead() or BufNetWrite() function will be called. 3. Vim can't find the function and triggers the |FuncUndefined| autocommand event. Since the pattern "BufNet*" matches the invoked function, the command "source fname" will be executed. "fname" will be equal to the name of the script, no matter where it is located, because it comes from expanding "<sfile>" (see |expand()|). 4. The script is sourced again, the "s:did_load" variable exists and the functions are defined. Notice that the functions that are loaded afterwards match the pattern in the |FuncUndefined| autocommand. You must make sure that no other plugin defines functions that match this pattern. ============================================================================== *41.15* Writing library scripts *write-library-script* Some functionality will be required in several places. When this becomes more than a few lines you will want to put it in one script and use it from many scripts. We will call that one script a library script. Manually loading a library script is possible, so long as you avoid loading it when it's already done. You can do this with the |exists()| function. Example: > if !exists('*MyLibFunction') runtime library/mylibscript.vim endif MyLibFunction(arg) Here you need to know that MyLibFunction() is defined in a script "library/mylibscript.vim" in one of the directories in 'runtimepath'. To make this a bit simpler Vim offers the autoload mechanism. Then the example looks like this: > mylib#myfunction(arg) That's a lot simpler, isn't it? Vim will recognize the function name by the embedded "#" character and when it's not defined search for the script "autoload/mylib.vim" in 'runtimepath'. That script must define the "mylib#myfunction()" function. You can put many other functions in the mylib.vim script, you are free to organize your functions in library scripts. But you must use function names where the part before the '#' matches the script name. Otherwise Vim would not know what script to load. If you get really enthusiastic and write lots of library scripts, you may want to use subdirectories. Example: > netlib#ftp#read('somefile') For Unix the library script used for this could be: ~/.vim/autoload/netlib/ftp.vim Where the function is defined like this: > def netlib#ftp#read(fname: string) # Read the file fname through ftp enddef Notice that the name the function is defined with is exactly the same as the name used for calling the function. And the part before the last '#' exactly matches the subdirectory and script name. You can use the same mechanism for variables: > var weekdays = dutch#weekdays This will load the script "autoload/dutch.vim", which should contain something like: > var dutch#weekdays = ['zondag', 'maandag', 'dinsdag', 'woensdag', \ 'donderdag', 'vrijdag', 'zaterdag'] Further reading: |autoload|. ============================================================================== *41.16* Distributing Vim scripts *distribute-script* Vim users will look for scripts on the Vim website: http://www.vim.org. If you made something that is useful for others, share it! Another place is github. But there you need to know where to find it! The advantage is that most plugin managers fetch plugins from github. You'll have to use your favorite search engine to find them. Vim scripts can be used on any system. However, there might not be a tar or gzip command. If you want to pack files together and/or compress them the "zip" utility is recommended. For utmost portability use Vim itself to pack scripts together. This can be done with the Vimball utility. See |vimball|. It's good if you add a line to allow automatic updating. See |glvs-plugins|. ============================================================================== Next chapter: |usr_42.txt| Add new menus Copyright: see |manual-copyright| vim:tw=78:ts=8:noet:ft=help:norl: