Mercurial > vim
view src/vim9type.c @ 36058:1f0d379c20b7
Added tag v9.1.0701 for changeset b9f5056aacde2faa61e449e691b3a0d1a8cbddfb
author | Christian Brabandt <cb@256bit.org> |
---|---|
date | Wed, 28 Aug 2024 23:30:03 +0200 |
parents | 62de45f0c311 |
children |
line wrap: on
line source
/* vi:set ts=8 sts=4 sw=4 noet: * * VIM - Vi IMproved by Bram Moolenaar * * Do ":help uganda" in Vim to read copying and usage conditions. * Do ":help credits" in Vim to see a list of people who contributed. * See README.txt for an overview of the Vim source code. */ /* * vim9type.c: handling of types */ #define USING_FLOAT_STUFF #include "vim.h" #if defined(FEAT_EVAL) || defined(PROTO) #ifdef VMS # include <float.h> #endif // When not generating protos this is included in proto.h #ifdef PROTO # include "vim9.h" #endif /* * Allocate memory for a type_T and add the pointer to type_gap, so that it can * be easily freed later. */ type_T * get_type_ptr(garray_T *type_gap) { type_T *type; if (ga_grow(type_gap, 1) == FAIL) return NULL; type = ALLOC_CLEAR_ONE(type_T); if (type == NULL) return NULL; ((type_T **)type_gap->ga_data)[type_gap->ga_len] = type; ++type_gap->ga_len; return type; } /* * Make a shallow copy of "type". * When allocation fails returns "type". */ type_T * copy_type(type_T *type, garray_T *type_gap) { type_T *copy = get_type_ptr(type_gap); if (copy == NULL) return type; *copy = *type; copy->tt_flags &= ~TTFLAG_STATIC; if (type->tt_args != NULL && func_type_add_arg_types(copy, type->tt_argcount, type_gap) == OK) for (int i = 0; i < type->tt_argcount; ++i) copy->tt_args[i] = type->tt_args[i]; return copy; } /* * Inner part of copy_type_deep(). * When allocation fails returns "type". */ static type_T * copy_type_deep_rec(type_T *type, garray_T *type_gap, garray_T *seen_types) { for (int i = 0; i < seen_types->ga_len; ++i) if (((type_T **)seen_types->ga_data)[i * 2] == type) // seen this type before, return the copy we made return ((type_T **)seen_types->ga_data)[i * 2 + 1]; type_T *copy = copy_type(type, type_gap); if (ga_grow(seen_types, 1) == FAIL) return copy; ((type_T **)seen_types->ga_data)[seen_types->ga_len * 2] = type; ((type_T **)seen_types->ga_data)[seen_types->ga_len * 2 + 1] = copy; ++seen_types->ga_len; if (copy->tt_member != NULL) copy->tt_member = copy_type_deep_rec(copy->tt_member, type_gap, seen_types); if (type->tt_args != NULL) for (int i = 0; i < type->tt_argcount; ++i) copy->tt_args[i] = copy_type_deep_rec(copy->tt_args[i], type_gap, seen_types); return copy; } /* * Make a deep copy of "type". * When allocation fails returns "type". */ static type_T * copy_type_deep(type_T *type, garray_T *type_gap) { garray_T seen_types; // stores type pairs : a type we have seen and the copy used ga_init2(&seen_types, sizeof(type_T *) * 2, 20); type_T *res = copy_type_deep_rec(type, type_gap, &seen_types); ga_clear(&seen_types); return res; } void clear_type_list(garray_T *gap) { while (gap->ga_len > 0) vim_free(((type_T **)gap->ga_data)[--gap->ga_len]); ga_clear(gap); } void clear_func_type_list(garray_T *gap, type_T **func_type) { while (gap->ga_len > 0) { // func_type pointing to the uf_type_list, so reset pointer if (*func_type == ((type_T **)gap->ga_data)[--gap->ga_len]) *func_type = &t_func_any; vim_free(((type_T **)gap->ga_data)[gap->ga_len]); } ga_clear(gap); } /* * Take a type that is using entries in a growarray and turn it into a type * with allocated entries. */ type_T * alloc_type(type_T *type) { type_T *ret; if (type == NULL) return NULL; // A fixed type never contains allocated types, return as-is. if (type->tt_flags & TTFLAG_STATIC) return type; ret = ALLOC_ONE(type_T); *ret = *type; if (ret->tt_member != NULL) ret->tt_member = alloc_type(ret->tt_member); if (type->tt_argcount > 0 && type->tt_args != NULL) { int i; ret->tt_args = ALLOC_MULT(type_T *, type->tt_argcount); if (ret->tt_args != NULL) for (i = 0; i < type->tt_argcount; ++i) ret->tt_args[i] = alloc_type(type->tt_args[i]); } else ret->tt_args = NULL; return ret; } /* * Free a type that was created with alloc_type(). */ void free_type(type_T *type) { int i; if (type == NULL || (type->tt_flags & TTFLAG_STATIC)) return; if (type->tt_args != NULL) { for (i = 0; i < type->tt_argcount; ++i) free_type(type->tt_args[i]); vim_free(type->tt_args); } free_type(type->tt_member); vim_free(type); } /* * Return TRUE if "type" is to be recursed into for setting the type. */ static int set_tv_type_recurse(type_T *type) { return type->tt_member != NULL && (type->tt_member->tt_type == VAR_DICT || type->tt_member->tt_type == VAR_LIST) && type->tt_member->tt_member != NULL && type->tt_member->tt_member != &t_any && type->tt_member->tt_member != &t_unknown; } /* * Set the type of Dict "d" to "type" */ static void set_tv_type_dict(dict_T *d, type_T *type) { if (d->dv_type == type) return; free_type(d->dv_type); d->dv_type = alloc_type(type); // Need to recursively set the type of dict items? if (!set_tv_type_recurse(type)) return; int todo = (int)d->dv_hashtab.ht_used; hashitem_T *hi; dictitem_T *di; FOR_ALL_HASHTAB_ITEMS(&d->dv_hashtab, hi, todo) { if (!HASHITEM_EMPTY(hi)) { --todo; di = HI2DI(hi); set_tv_type(&di->di_tv, type->tt_member); } } } /* * Set the type of List "l" to "type" */ static void set_tv_type_list(list_T *l, type_T *type) { if (l->lv_type == type) return; free_type(l->lv_type); l->lv_type = alloc_type(type); // Need to recursively set the type of list items? if (l->lv_first == &range_list_item || !set_tv_type_recurse(type)) return; listitem_T *li; FOR_ALL_LIST_ITEMS(l, li) set_tv_type(&li->li_tv, type->tt_member); } /* * Set the type of "tv" to "type" if it is a list or dict. */ void set_tv_type(typval_T *tv, type_T *type) { if (type->tt_type == VAR_ANY) // If the variable type is "any", then keep the value type. // e.g. var x: any = [1, 2] or var y: any = {v: 1} return; if (tv->v_type == VAR_DICT && tv->vval.v_dict != NULL) set_tv_type_dict(tv->vval.v_dict, type); else if (tv->v_type == VAR_LIST && tv->vval.v_list != NULL) set_tv_type_list(tv->vval.v_list, type); } type_T * get_list_type(type_T *member_type, garray_T *type_gap) { type_T *type; // recognize commonly used types if (member_type == NULL || member_type->tt_type == VAR_ANY) return &t_list_any; if (member_type->tt_type == VAR_VOID || member_type->tt_type == VAR_UNKNOWN) return &t_list_empty; if (member_type->tt_type == VAR_BOOL) return &t_list_bool; if (member_type->tt_type == VAR_NUMBER) return &t_list_number; if (member_type->tt_type == VAR_STRING) return &t_list_string; // Not a common type, create a new entry. type = get_type_ptr(type_gap); if (type == NULL) return &t_any; type->tt_type = VAR_LIST; type->tt_member = member_type; type->tt_argcount = 0; type->tt_args = NULL; return type; } type_T * get_dict_type(type_T *member_type, garray_T *type_gap) { type_T *type; // recognize commonly used types if (member_type == NULL || member_type->tt_type == VAR_ANY) return &t_dict_any; if (member_type->tt_type == VAR_VOID || member_type->tt_type == VAR_UNKNOWN) return &t_dict_empty; if (member_type->tt_type == VAR_BOOL) return &t_dict_bool; if (member_type->tt_type == VAR_NUMBER) return &t_dict_number; if (member_type->tt_type == VAR_STRING) return &t_dict_string; // Not a common type, create a new entry. type = get_type_ptr(type_gap); if (type == NULL) return &t_any; type->tt_type = VAR_DICT; type->tt_member = member_type; type->tt_argcount = 0; type->tt_args = NULL; return type; } /* * Allocate a new type for a function. */ type_T * alloc_func_type(type_T *ret_type, int argcount, garray_T *type_gap) { type_T *type = get_type_ptr(type_gap); if (type == NULL) return &t_any; type->tt_type = VAR_FUNC; type->tt_member = ret_type == NULL ? &t_unknown : ret_type; type->tt_argcount = argcount; type->tt_args = NULL; return type; } /* * Get a function type, based on the return type "ret_type". * "argcount" must be -1 or 0, a predefined type can be used. */ type_T * get_func_type(type_T *ret_type, int argcount, garray_T *type_gap) { // recognize commonly used types if (ret_type == &t_unknown || ret_type == NULL) { // (argcount == 0) is not possible return &t_func_unknown; } if (ret_type == &t_void) { if (argcount == 0) return &t_func_0_void; else return &t_func_void; } if (ret_type == &t_any) { if (argcount == 0) return &t_func_0_any; else return &t_func_any; } if (ret_type == &t_number) { if (argcount == 0) return &t_func_0_number; else return &t_func_number; } if (ret_type == &t_string) { if (argcount == 0) return &t_func_0_string; else return &t_func_string; } return alloc_func_type(ret_type, argcount, type_gap); } /* * For a function type, reserve space for "argcount" argument types (including * vararg). */ int func_type_add_arg_types( type_T *functype, int argcount, garray_T *type_gap) { // To make it easy to free the space needed for the argument types, add the // pointer to type_gap. if (ga_grow(type_gap, 1) == FAIL) return FAIL; functype->tt_args = ALLOC_CLEAR_MULT(type_T *, argcount); if (functype->tt_args == NULL) return FAIL; ((type_T **)type_gap->ga_data)[type_gap->ga_len] = (void *)functype->tt_args; ++type_gap->ga_len; return OK; } /* * Return TRUE if "type" is NULL, any or unknown. * This also works for const (comparing with &t_any and &t_unknown doesn't). */ int type_any_or_unknown(type_T *type) { return type == NULL || type->tt_type == VAR_ANY || type->tt_type == VAR_UNKNOWN; } /* * Get a type_T for a "special" typval in "tv". */ static type_T * special_typval2type(typval_T *tv) { switch (tv->vval.v_number) { case VVAL_NULL: return &t_null; case VVAL_NONE: return &t_none; case VVAL_TRUE: case VVAL_FALSE: return &t_bool; default: return &t_unknown; } } /* * Get a type_T for a List typval in "tv". * When "flags" has TVTT_DO_MEMBER also get the member type, otherwise use * "any". * When "flags" has TVTT_MORE_SPECIFIC get the more specific member type if it * is "any". */ static type_T * list_typval2type(typval_T *tv, int copyID, garray_T *type_gap, int flags) { list_T *l = tv->vval.v_list; listitem_T *li; type_T *member_type = NULL; // An empty list has type list<unknown>, unless the type was specified // and is not list<any>. This matters when assigning to a variable // with a specific list type. if (l == NULL || (l->lv_first == NULL && (l->lv_type == NULL || l->lv_type->tt_member == &t_any))) return &t_list_empty; if ((flags & TVTT_DO_MEMBER) == 0) return &t_list_any; // If the type is list<any> go through the members, it may end up a // more specific type. if (l->lv_type != NULL && (l->lv_first == NULL || (flags & TVTT_MORE_SPECIFIC) == 0 || l->lv_type->tt_member != &t_any)) // make a copy, lv_type may be freed if the list is freed return copy_type_deep(l->lv_type, type_gap); if (l->lv_first == &range_list_item) return &t_list_number; if (l->lv_copyID == copyID) // avoid recursion return &t_list_any; l->lv_copyID = copyID; // Use the common type of all members. member_type = typval2type(&l->lv_first->li_tv, copyID, type_gap, TVTT_DO_MEMBER); for (li = l->lv_first->li_next; li != NULL; li = li->li_next) common_type(typval2type(&li->li_tv, copyID, type_gap, TVTT_DO_MEMBER), member_type, &member_type, type_gap); return get_list_type(member_type, type_gap); } /* * Get a type_T for a Dict typval in "tv". * When "flags" has TVTT_DO_MEMBER also get the member type, otherwise use * "any". * When "flags" has TVTT_MORE_SPECIFIC get the more specific member type if it * is "any". */ static type_T * dict_typval2type(typval_T *tv, int copyID, garray_T *type_gap, int flags) { dict_iterator_T iter; typval_T *value; dict_T *d = tv->vval.v_dict; type_T *member_type = NULL; if (d == NULL || (d->dv_hashtab.ht_used == 0 && d->dv_type == NULL)) return &t_dict_empty; if ((flags & TVTT_DO_MEMBER) == 0) return &t_dict_any; // If the type is dict<any> go through the members, it may end up a // more specific type. if (d->dv_type != NULL && (d->dv_hashtab.ht_used == 0 || (flags & TVTT_MORE_SPECIFIC) == 0 || d->dv_type->tt_member != &t_any)) return d->dv_type; if (d->dv_copyID == copyID) // avoid recursion return &t_dict_any; d->dv_copyID = copyID; // Use the common type of all values. dict_iterate_start(tv, &iter); dict_iterate_next(&iter, &value); member_type = typval2type(value, copyID, type_gap, TVTT_DO_MEMBER); while (dict_iterate_next(&iter, &value) != NULL) common_type(typval2type(value, copyID, type_gap, TVTT_DO_MEMBER), member_type, &member_type, type_gap); return get_dict_type(member_type, type_gap); } /* * Get a type_T for a "partial" typval in "tv". */ static type_T * partial_typval2type(typval_T *tv, ufunc_T *ufunc, garray_T *type_gap) { partial_T *pt = tv->vval.v_partial; type_T *type; type = get_type_ptr(type_gap); if (type == NULL) return NULL; *type = *ufunc->uf_func_type; if (type->tt_argcount >= 0 && pt->pt_argc > 0) { type->tt_argcount -= pt->pt_argc; type->tt_min_argcount -= pt->pt_argc; if (type->tt_argcount > 0 && func_type_add_arg_types(type, type->tt_argcount, type_gap) == OK) for (int i = 0; i < type->tt_argcount; ++i) type->tt_args[i] = ufunc->uf_func_type->tt_args[i + pt->pt_argc]; } if (pt->pt_func != NULL) type->tt_member = pt->pt_func->uf_ret_type; return type; } /* * Get a type_T for a "class" or an "object" typval in "tv". */ static type_T * oc_typval2type(typval_T *tv) { if (tv->v_type == VAR_CLASS) { if (tv->vval.v_class == NULL) return &t_class; return &tv->vval.v_class->class_type; } if (tv->vval.v_object != NULL) return &tv->vval.v_object->obj_class->class_object_type; return &t_object; } /* * Get a type_T for a "function" or a "partial" */ static type_T * fp_typval2type(typval_T *tv, garray_T *type_gap) { char_u *name = NULL; ufunc_T *ufunc = NULL; type_T *type; type_T *member_type = NULL; int argcount = 0; int min_argcount = 0; if (tv->v_type == VAR_PARTIAL && tv->vval.v_partial != NULL) { if (tv->vval.v_partial->pt_func != NULL) ufunc = tv->vval.v_partial->pt_func; else name = tv->vval.v_partial->pt_name; } else name = tv->vval.v_string; if (name == NULL && ufunc == NULL) return &t_func_unknown; if (name != NULL) { int idx = find_internal_func(name); if (idx >= 0) { type_T *decl_type; // unused internal_func_get_argcount(idx, &argcount, &min_argcount); member_type = internal_func_ret_type(idx, 0, NULL, &decl_type, type_gap); } else ufunc = find_func(name, FALSE); } if (ufunc != NULL) { // May need to get the argument types from default values by // compiling the function. if (ufunc->uf_def_status == UF_TO_BE_COMPILED && compile_def_function(ufunc, TRUE, CT_NONE, NULL) == FAIL) return NULL; if (ufunc->uf_func_type == NULL) set_function_type(ufunc); if (ufunc->uf_func_type != NULL) { if (tv->v_type == VAR_PARTIAL && tv->vval.v_partial != NULL) return partial_typval2type(tv, ufunc, type_gap); return ufunc->uf_func_type; } } type = get_type_ptr(type_gap); if (type == NULL) return NULL; type->tt_type = tv->v_type; type->tt_argcount = argcount; type->tt_min_argcount = min_argcount; if (tv->v_type == VAR_PARTIAL && tv->vval.v_partial != NULL && tv->vval.v_partial->pt_argc > 0) { type->tt_argcount -= tv->vval.v_partial->pt_argc; type->tt_min_argcount -= tv->vval.v_partial->pt_argc; } type->tt_member = member_type; return type; } /* * Get a type_T for a typval_T. * "type_gap" is used to temporarily create types in. * When "flags" has TVTT_DO_MEMBER also get the member type, otherwise use * "any". * When "flags" has TVTT_MORE_SPECIFIC get the more specific member type if it * is "any". */ static type_T * typval2type_int(typval_T *tv, int copyID, garray_T *type_gap, int flags) { switch (tv->v_type) { case VAR_UNKNOWN: return &t_unknown; case VAR_ANY: return &t_any; case VAR_VOID: return &t_void; case VAR_BOOL: return &t_bool; case VAR_SPECIAL: return special_typval2type(tv); case VAR_NUMBER: return &t_number; case VAR_FLOAT: return &t_float; case VAR_STRING: return &t_string; case VAR_BLOB: if (tv->vval.v_blob == NULL) return &t_blob_null; return &t_blob; case VAR_LIST: return list_typval2type(tv, copyID, type_gap, flags); case VAR_DICT: return dict_typval2type(tv, copyID, type_gap, flags); case VAR_JOB: return &t_job; case VAR_CHANNEL: return &t_channel; case VAR_CLASS: case VAR_OBJECT: return oc_typval2type(tv); case VAR_TYPEALIAS: return &t_typealias; case VAR_FUNC: case VAR_PARTIAL: return fp_typval2type(tv, type_gap); case VAR_INSTR: default: break; } return NULL; } /* * Return TRUE if "tv" is not a bool but should be converted to bool. */ int need_convert_to_bool(type_T *type, typval_T *tv) { return type != NULL && type == &t_bool && tv->v_type != VAR_BOOL && (tv->v_type == VAR_NUMBER && (tv->vval.v_number == 0 || tv->vval.v_number == 1)); } /* * Get a type_T for a typval_T. * "type_list" is used to temporarily create types in. * When "flags" has TVTT_DO_MEMBER also get the member type, otherwise use * "any". * When "flags" has TVTT_MORE_SPECIFIC get the most specific member type. */ type_T * typval2type(typval_T *tv, int copyID, garray_T *type_gap, int flags) { type_T *type = typval2type_int(tv, copyID, type_gap, flags); if (type == NULL) return NULL; if (type != &t_bool && (tv->v_type == VAR_NUMBER && (tv->vval.v_number == 0 || tv->vval.v_number == 1))) // Number 0 and 1 and expression with "&&" or "||" can also be used // for bool. type = &t_number_bool; else if (type != &t_float && tv->v_type == VAR_NUMBER) // A number can also be used for float. type = &t_number_float; return type; } /* * Return TRUE if "type" can be used for a variable declaration. * Give an error and return FALSE if not. */ int valid_declaration_type(type_T *type) { if (type->tt_type == VAR_SPECIAL // null, none || type->tt_type == VAR_VOID) { char *tofree = NULL; char *name = type_name(type, &tofree); semsg(_(e_invalid_type_for_object_variable_str), name); vim_free(tofree); return FALSE; } return TRUE; } /* * Get a type_T for a typval_T, used for v: variables. * "type_list" is used to temporarily create types in. */ type_T * typval2type_vimvar(typval_T *tv, garray_T *type_gap) { if (tv->v_type == VAR_LIST) // e.g. for v:oldfiles return &t_list_string; if (tv->v_type == VAR_DICT) // e.g. for v:event return &t_dict_any; return typval2type(tv, get_copyID(), type_gap, TVTT_DO_MEMBER); } int check_typval_arg_type( type_T *expected, typval_T *actual_tv, char *func_name, int arg_idx) { where_T where = WHERE_INIT; if (arg_idx > 0) { where.wt_index = arg_idx; where.wt_kind = WT_ARGUMENT; } where.wt_func_name = func_name; return check_typval_type(expected, actual_tv, where); } /* * Return FAIL if "expected" and "actual" don't match. * When "argidx" > 0 it is included in the error message. */ int check_typval_type(type_T *expected, typval_T *actual_tv, where_T where) { garray_T type_list; type_T *actual_type; int res = FAIL; if (expected == NULL) return OK; // didn't expect anything. ga_init2(&type_list, sizeof(type_T *), 10); // A null_function and null_partial are special cases, they can be used to // clear a variable. if ((actual_tv->v_type == VAR_FUNC && actual_tv->vval.v_string == NULL) || (actual_tv->v_type == VAR_PARTIAL && actual_tv->vval.v_partial == NULL)) actual_type = &t_func_unknown; else // When the actual type is list<any> or dict<any> go through the values // to possibly get a more specific type. actual_type = typval2type(actual_tv, get_copyID(), &type_list, TVTT_DO_MEMBER | TVTT_MORE_SPECIFIC); if (actual_type != NULL) { res = check_type_maybe(expected, actual_type, TRUE, where); if (res == MAYBE && !(actual_type->tt_type == VAR_FUNC && (actual_type->tt_member == &t_unknown || actual_type->tt_member == NULL))) { // If a type check is needed that means assigning "any" or // "unknown" to a more specific type, which fails here. // Except when it looks like a lambda, since they have an // incomplete type. A legacy lambda function has a NULL return // type. type_mismatch_where(expected, actual_type, where); res = FAIL; } } clear_type_list(&type_list); return res; } void arg_type_mismatch(type_T *expected, type_T *actual, int arg_idx) { where_T where = WHERE_INIT; if (arg_idx > 0) { where.wt_index = arg_idx; where.wt_kind = WT_ARGUMENT; } type_mismatch_where(expected, actual, where); } void type_mismatch_where(type_T *expected, type_T *actual, where_T where) { char *tofree1, *tofree2; char *typename1 = type_name(expected, &tofree1); char *typename2 = type_name(actual, &tofree2); switch (where.wt_kind) { case WT_MEMBER: semsg(_(e_variable_str_type_mismatch_expected_str_but_got_str), where.wt_func_name, typename1, typename2); break; case WT_METHOD: case WT_METHOD_ARG: case WT_METHOD_RETURN: semsg(_(e_method_str_type_mismatch_expected_str_but_got_str), where.wt_func_name, typename1, typename2); break; case WT_VARIABLE: if (where.wt_func_name == NULL) semsg(_(e_variable_nr_type_mismatch_expected_str_but_got_str), where.wt_index, typename1, typename2); else semsg(_(e_variable_nr_type_mismatch_expected_str_but_got_str_in_str), where.wt_index, typename1, typename2, where.wt_func_name); break; case WT_ARGUMENT: if (where.wt_func_name == NULL) semsg(_(e_argument_nr_type_mismatch_expected_str_but_got_str), where.wt_index, typename1, typename2); else semsg(_(e_argument_nr_type_mismatch_expected_str_but_got_str_in_str), where.wt_index, typename1, typename2, where.wt_func_name); break; case WT_CAST: case WT_UNKNOWN: if (where.wt_func_name == NULL) semsg(_(e_type_mismatch_expected_str_but_got_str), typename1, typename2); else semsg(_(e_type_mismatch_expected_str_but_got_str_in_str), typename1, typename2, where.wt_func_name); break; } vim_free(tofree1); vim_free(tofree2); } /* * Check if the expected and actual types match. * Does not allow for assigning "any" to a specific type. * When "argidx" > 0 it is included in the error message. * Return OK if types match. * Return FAIL if types do not match. */ int check_type( type_T *expected, type_T *actual, int give_msg, where_T where) { int ret = check_type_maybe(expected, actual, give_msg, where); return ret == MAYBE ? OK : ret; } /* * As check_type() but return MAYBE when a runtime type check should be used * when compiling. */ int check_type_maybe( type_T *expected, type_T *actual, int give_msg, where_T where) { int ret = OK; // When expected is "unknown" we accept any actual type. // When expected is "any" we accept any actual type except "void". if (expected->tt_type != VAR_UNKNOWN && !(expected->tt_type == VAR_ANY && actual->tt_type != VAR_VOID)) { // tt_type should match, except that a "partial" can be assigned to a // variable with type "func". // And "unknown" (using global variable) and "any" need a runtime type // check. if (!(expected->tt_type == actual->tt_type || actual->tt_type == VAR_UNKNOWN || actual->tt_type == VAR_ANY || (expected->tt_type == VAR_FUNC && actual->tt_type == VAR_PARTIAL))) { if (expected->tt_type == VAR_BOOL && (actual->tt_flags & TTFLAG_BOOL_OK)) // Using number 0 or 1 for bool is OK. return OK; if (expected->tt_type == VAR_FLOAT && actual->tt_type == VAR_NUMBER && ((expected->tt_flags & TTFLAG_NUMBER_OK) || (actual->tt_flags & TTFLAG_FLOAT_OK))) // Using a number where a float is expected is OK here. return OK; if (give_msg) type_mismatch_where(expected, actual, where); return FAIL; } if (expected->tt_type == VAR_DICT || expected->tt_type == VAR_LIST) { // "unknown" is used for an empty list or dict if (actual->tt_member != NULL && actual->tt_member != &t_unknown) ret = check_type_maybe(expected->tt_member, actual->tt_member, FALSE, where); } else if (expected->tt_type == VAR_FUNC && actual != &t_any) { // If the return type is unknown it can be anything, including // nothing, thus there is no point in checking. if (expected->tt_member != &t_unknown) { if (actual->tt_member != NULL && actual->tt_member != &t_unknown) { where_T func_where = where; func_where.wt_kind = WT_METHOD_RETURN; ret = check_type_maybe(expected->tt_member, actual->tt_member, FALSE, func_where); } else ret = MAYBE; } if (ret != FAIL && ((expected->tt_flags & TTFLAG_VARARGS) != (actual->tt_flags & TTFLAG_VARARGS)) && expected->tt_argcount != -1) ret = FAIL; if (ret != FAIL && expected->tt_argcount != -1 && actual->tt_min_argcount != -1 && (actual->tt_argcount == -1 || (actual->tt_argcount < expected->tt_min_argcount || actual->tt_argcount > expected->tt_argcount))) ret = FAIL; if (ret != FAIL && expected->tt_args != NULL && actual->tt_args != NULL) { int i; for (i = 0; i < expected->tt_argcount && i < actual->tt_argcount; ++i) { where_T func_where = where; func_where.wt_kind = WT_METHOD_ARG; // Allow for using "any" argument type, lambda's have them. if (actual->tt_args[i] != &t_any && check_type( expected->tt_args[i], actual->tt_args[i], FALSE, func_where) == FAIL) { ret = FAIL; break; } } } if (ret == OK && expected->tt_argcount >= 0 && actual->tt_argcount == -1) // check the argument count at runtime ret = MAYBE; } else if (expected->tt_type == VAR_OBJECT) { if (actual->tt_type == VAR_ANY) return MAYBE; // use runtime type check if (actual->tt_type != VAR_OBJECT) return FAIL; // don't use tt_class if (actual->tt_class == NULL) return OK; // A null object matches // For object method arguments, do a invariant type check in // an extended class. For all others, do a covariance type check. if (where.wt_kind == WT_METHOD_ARG) { if (actual->tt_class != expected->tt_class) ret = FAIL; } else if (!class_instance_of(actual->tt_class, expected->tt_class)) { // Check if this is an up-cast, if so we'll have to check the type at // runtime. if (where.wt_kind == WT_CAST && class_instance_of(expected->tt_class, actual->tt_class)) ret = MAYBE; else ret = FAIL; } } if (ret == FAIL && give_msg) type_mismatch_where(expected, actual, where); } if (ret == OK && expected->tt_type != VAR_UNKNOWN && expected->tt_type != VAR_ANY && (actual->tt_type == VAR_UNKNOWN || actual->tt_type == VAR_ANY)) // check the type at runtime ret = MAYBE; return ret; } /* * Check that the arguments of "type" match "argvars[argcount]". * "base_tv" is from "expr->Func()". * Return OK/FAIL. */ int check_argument_types( type_T *type, typval_T *argvars, int argcount, typval_T *base_tv, char_u *name) { int varargs = (type->tt_flags & TTFLAG_VARARGS) ? 1 : 0; int i; int totcount = argcount + (base_tv == NULL ? 0 : 1); if (type->tt_type != VAR_FUNC && type->tt_type != VAR_PARTIAL) return OK; // just in case if (totcount < type->tt_min_argcount - varargs) { emsg_funcname(e_not_enough_arguments_for_function_str, name); return FAIL; } if (!varargs && type->tt_argcount >= 0 && totcount > type->tt_argcount) { emsg_funcname(e_too_many_arguments_for_function_str, name); return FAIL; } if (type->tt_args == NULL) return OK; // cannot check for (i = 0; i < totcount; ++i) { type_T *expected; typval_T *tv; if (base_tv != NULL) { if (i == 0) tv = base_tv; else tv = &argvars[i - 1]; } else tv = &argvars[i]; if (varargs && i >= type->tt_argcount - 1) { expected = type->tt_args[type->tt_argcount - 1]; if (expected != NULL && expected->tt_type == VAR_LIST) expected = expected->tt_member; if (expected == NULL) expected = &t_any; } else expected = type->tt_args[i]; // check the type, unless the value is v:none if ((tv->v_type != VAR_SPECIAL || tv->vval.v_number != VVAL_NONE) && check_typval_arg_type(expected, tv, NULL, i + 1) == FAIL) return FAIL; } return OK; } /* * Skip over a type definition and return a pointer to just after it. * When "optional" is TRUE then a leading "?" is accepted. */ char_u * skip_type(char_u *start, int optional) { char_u *p = start; if (optional && *p == '?') ++p; // Also skip over "." for imported classes: "import.ClassName". while (ASCII_ISALNUM(*p) || *p == '_' || *p == '.') ++p; // Skip over "<type>"; this is permissive about white space. if (*skipwhite(p) == '<') { p = skipwhite(p); p = skip_type(skipwhite(p + 1), FALSE); p = skipwhite(p); if (*p == '>') ++p; } else if ((*p == '(' || (*p == ':' && VIM_ISWHITE(p[1]))) && STRNCMP("func", start, 4) == 0) { if (*p == '(') { // handle func(args): type ++p; while (*p != ')' && *p != NUL) { char_u *sp = p; if (STRNCMP(p, "...", 3) == 0) p += 3; p = skip_type(p, TRUE); if (p == sp) return p; // syntax error if (*p == ',') p = skipwhite(p + 1); } if (*p == ')') { if (p[1] == ':') p = skip_type(skipwhite(p + 2), FALSE); else ++p; } } else { // handle func: return_type p = skip_type(skipwhite(p + 1), FALSE); } } return p; } /* * Parse the member type: "<type>" and return "type" with the member set. * Use "type_gap" if a new type needs to be added. * "info" is extra information for an error message. * Returns NULL in case of failure. */ static type_T * parse_type_member( char_u **arg, type_T *type, garray_T *type_gap, int give_error, char *info) { char_u *arg_start = *arg; type_T *member_type; int prev_called_emsg = called_emsg; if (**arg != '<') { if (give_error) { if (*skipwhite(*arg) == '<') semsg(_(e_no_white_space_allowed_before_str_str), "<", *arg); else semsg(_(e_missing_type_after_str), info); } return NULL; } *arg = skipwhite(*arg + 1); member_type = parse_type(arg, type_gap, give_error); if (member_type == NULL) return NULL; *arg = skipwhite(*arg); if (**arg != '>' && called_emsg == prev_called_emsg) { if (give_error) semsg(_(e_missing_gt_after_type_str), arg_start); return NULL; } ++*arg; if (type->tt_type == VAR_LIST) return get_list_type(member_type, type_gap); return get_dict_type(member_type, type_gap); } /* * Parse a "func" type at "*arg" and advance over it. * When "give_error" is TRUE give error messages, otherwise be quiet. * Return NULL for failure. */ static type_T * parse_type_func(char_u **arg, size_t len, garray_T *type_gap, int give_error) { char_u *p; type_T *type; type_T *ret_type = &t_unknown; int argcount = -1; int flags = 0; int first_optional = -1; type_T *arg_type[MAX_FUNC_ARGS + 1]; // func({type}, ...{type}): {type} *arg += len; if (**arg == '(') { // "func" may or may not return a value, "func()" does // not return a value. ret_type = &t_void; p = ++*arg; argcount = 0; while (*p != NUL && *p != ')') { if (*p == '?') { if (first_optional == -1) first_optional = argcount; ++p; } else if (STRNCMP(p, "...", 3) == 0) { flags |= TTFLAG_VARARGS; p += 3; } else if (first_optional != -1) { if (give_error) emsg(_(e_mandatory_argument_after_optional_argument)); return NULL; } type = parse_type(&p, type_gap, give_error); if (type == NULL) return NULL; if ((flags & TTFLAG_VARARGS) != 0 && type->tt_type != VAR_LIST) { char *tofree; semsg(_(e_variable_arguments_type_must_be_list_str), type_name(type, &tofree)); vim_free(tofree); return NULL; } arg_type[argcount++] = type; // Nothing comes after "...{type}". if (flags & TTFLAG_VARARGS) break; if (*p != ',' && *skipwhite(p) == ',') { if (give_error) semsg(_(e_no_white_space_allowed_before_str_str), ",", p); return NULL; } if (*p == ',') { ++p; if (!VIM_ISWHITE(*p)) { if (give_error) semsg(_(e_white_space_required_after_str_str), ",", p - 1); return NULL; } } p = skipwhite(p); if (argcount == MAX_FUNC_ARGS) { if (give_error) emsg(_(e_too_many_argument_types)); return NULL; } } p = skipwhite(p); if (*p != ')') { if (give_error) emsg(_(e_missing_closing_paren)); return NULL; } *arg = p + 1; } if (**arg == ':') { // parse return type ++*arg; if (!VIM_ISWHITE(**arg) && give_error) semsg(_(e_white_space_required_after_str_str), ":", *arg - 1); *arg = skipwhite(*arg); ret_type = parse_type(arg, type_gap, give_error); if (ret_type == NULL) return NULL; } if (flags == 0 && first_optional == -1 && argcount <= 0) type = get_func_type(ret_type, argcount, type_gap); else { type = alloc_func_type(ret_type, argcount, type_gap); type->tt_flags = flags; if (argcount > 0) { type->tt_argcount = argcount; type->tt_min_argcount = first_optional == -1 ? argcount : first_optional; if (func_type_add_arg_types(type, argcount, type_gap) == FAIL) return NULL; mch_memmove(type->tt_args, arg_type, sizeof(type_T *) * argcount); } } return type; } /* * Parse a user defined type at "*arg" and advance over it. * It can be a class or an interface or a typealias name, possibly imported. * Return NULL if a type is not found. */ static type_T * parse_type_user_defined( char_u **arg, size_t len, garray_T *type_gap, int give_error) { int did_emsg_before = did_emsg; typval_T tv; tv.v_type = VAR_UNKNOWN; if (eval_variable_import(*arg, &tv) == OK) { if (tv.v_type == VAR_CLASS && tv.vval.v_class != NULL) { type_T *type = get_type_ptr(type_gap); if (type != NULL) { // Although the name is that of a class or interface, the type // uses will be an object. type->tt_type = VAR_OBJECT; type->tt_class = tv.vval.v_class; clear_tv(&tv); *arg += len; // Skip over ".ClassName". while (ASCII_ISALNUM(**arg) || **arg == '_' || **arg == '.') ++*arg; return type; } } else if (tv.v_type == VAR_TYPEALIAS) { // user defined type type_T *type = copy_type(tv.vval.v_typealias->ta_type, type_gap); *arg += len; clear_tv(&tv); // Skip over ".TypeName". while (ASCII_ISALNUM(**arg) || **arg == '_' || **arg == '.') ++*arg; return type; } clear_tv(&tv); } if (give_error && (did_emsg == did_emsg_before)) { char_u *p = skip_type(*arg, FALSE); char cc = *p; *p = NUL; semsg(_(e_type_not_recognized_str), *arg); *p = cc; } return NULL; } /* * Parse a type at "arg" and advance over it. * When "give_error" is TRUE give error messages, otherwise be quiet. * Return NULL for failure. */ type_T * parse_type(char_u **arg, garray_T *type_gap, int give_error) { char_u *p = *arg; size_t len; // Skip over the first word. while (ASCII_ISALNUM(*p) || *p == '_') ++p; len = p - *arg; switch (**arg) { case 'a': if (len == 3 && STRNCMP(*arg, "any", len) == 0) { *arg += len; return &t_any; } break; case 'b': if (len == 4 && STRNCMP(*arg, "bool", len) == 0) { *arg += len; return &t_bool; } if (len == 4 && STRNCMP(*arg, "blob", len) == 0) { *arg += len; return &t_blob; } break; case 'c': if (len == 7 && STRNCMP(*arg, "channel", len) == 0) { *arg += len; return &t_channel; } break; case 'd': if (len == 4 && STRNCMP(*arg, "dict", len) == 0) { *arg += len; return parse_type_member(arg, &t_dict_any, type_gap, give_error, "dict"); } break; case 'f': if (len == 5 && STRNCMP(*arg, "float", len) == 0) { *arg += len; return &t_float; } if (len == 4 && STRNCMP(*arg, "func", len) == 0) return parse_type_func(arg, len, type_gap, give_error); break; case 'j': if (len == 3 && STRNCMP(*arg, "job", len) == 0) { *arg += len; return &t_job; } break; case 'l': if (len == 4 && STRNCMP(*arg, "list", len) == 0) { *arg += len; return parse_type_member(arg, &t_list_any, type_gap, give_error, "list"); } break; case 'n': if (len == 6 && STRNCMP(*arg, "number", len) == 0) { *arg += len; return &t_number; } break; case 's': if (len == 6 && STRNCMP(*arg, "string", len) == 0) { *arg += len; return &t_string; } break; case 'v': if (len == 4 && STRNCMP(*arg, "void", len) == 0) { *arg += len; return &t_void; } break; } // User defined type return parse_type_user_defined(arg, len, type_gap, give_error); } /* * Check if "type1" and "type2" are exactly the same. * "flags" can have ETYPE_ARG_UNKNOWN, which means that an unknown argument * type in "type1" is accepted. */ int equal_type(type_T *type1, type_T *type2, int flags) { int i; if (type1 == NULL || type2 == NULL) return FALSE; if (type1->tt_type != type2->tt_type) return FALSE; switch (type1->tt_type) { case VAR_UNKNOWN: case VAR_ANY: case VAR_VOID: case VAR_SPECIAL: case VAR_BOOL: case VAR_NUMBER: case VAR_FLOAT: case VAR_STRING: case VAR_BLOB: case VAR_JOB: case VAR_CHANNEL: case VAR_INSTR: case VAR_CLASS: case VAR_OBJECT: case VAR_TYPEALIAS: break; // not composite is always OK case VAR_LIST: case VAR_DICT: return equal_type(type1->tt_member, type2->tt_member, flags); case VAR_FUNC: case VAR_PARTIAL: if (!equal_type(type1->tt_member, type2->tt_member, flags) || type1->tt_argcount != type2->tt_argcount) return FALSE; if (type1->tt_argcount < 0 || type1->tt_args == NULL || type2->tt_args == NULL) return TRUE; for (i = 0; i < type1->tt_argcount; ++i) if ((flags & ETYPE_ARG_UNKNOWN) == 0 && !equal_type(type1->tt_args[i], type2->tt_args[i], flags)) return FALSE; return TRUE; } return TRUE; } /* * Find the common type of "type1" (VAR_FUNC) and "type2" (VAR_FUNC) and put it * in "dest". "type2" and "dest" may be the same. */ static void common_type_var_func( type_T *type1, type_T *type2, type_T **dest, garray_T *type_gap) { type_T *common; // When one of the types is t_func_unknown return the other one. // Useful if a list or dict item is null_func. if (type1 == &t_func_unknown) { *dest = type2; return; } if (type2 == &t_func_unknown) { *dest = type1; return; } common_type(type1->tt_member, type2->tt_member, &common, type_gap); if (type1->tt_argcount == type2->tt_argcount && type1->tt_argcount >= 0) { int argcount = type1->tt_argcount; int i; *dest = alloc_func_type(common, argcount, type_gap); if (type1->tt_args != NULL && type2->tt_args != NULL) { if (func_type_add_arg_types(*dest, argcount, type_gap) == OK) for (i = 0; i < argcount; ++i) common_type(type1->tt_args[i], type2->tt_args[i], &(*dest)->tt_args[i], type_gap); } } else // Use -1 for "tt_argcount" to indicate an unknown number of // arguments. *dest = alloc_func_type(common, -1, type_gap); // Use the minimum of min_argcount. (*dest)->tt_min_argcount = type1->tt_min_argcount < type2->tt_min_argcount ? type1->tt_min_argcount : type2->tt_min_argcount; } /* * Find the common type of "type1" and "type2" and put it in "dest". * "type2" and "dest" may be the same. */ void common_type(type_T *type1, type_T *type2, type_T **dest, garray_T *type_gap) { if (equal_type(type1, type2, 0)) { *dest = type1; return; } // If either is VAR_UNKNOWN use the other type. An empty list/dict has no // specific type. if (type1 == NULL || type1->tt_type == VAR_UNKNOWN) { *dest = type2; return; } if (type2 == NULL || type2->tt_type == VAR_UNKNOWN) { *dest = type1; return; } if (type1->tt_type == type2->tt_type) { if (type1->tt_type == VAR_LIST || type2->tt_type == VAR_DICT) { type_T *common; common_type(type1->tt_member, type2->tt_member, &common, type_gap); if (type1->tt_type == VAR_LIST) *dest = get_list_type(common, type_gap); else *dest = get_dict_type(common, type_gap); return; } if (type1->tt_type == VAR_FUNC) { common_type_var_func(type1, type2, dest, type_gap); return; } } *dest = &t_any; } /* * Push an entry onto the type stack. "type" used both for the current type * and the declared type. * Returns FAIL when out of memory. */ int push_type_stack(cctx_T *cctx, type_T *type) { return push_type_stack2(cctx, type, type); } /* * Push an entry onto the type stack. "type" is the current type, "decl_type" * is the declared type. * Returns FAIL when out of memory. */ int push_type_stack2(cctx_T *cctx, type_T *type, type_T *decl_type) { garray_T *stack = &cctx->ctx_type_stack; type2_T *typep; if (GA_GROW_FAILS(stack, 1)) return FAIL; typep = ((type2_T *)stack->ga_data) + stack->ga_len; typep->type_curr = type; typep->type_decl = decl_type; ++stack->ga_len; return OK; } /* * Set the type of the top of the stack to "type". */ void set_type_on_stack(cctx_T *cctx, type_T *type, int offset) { garray_T *stack = &cctx->ctx_type_stack; type2_T *typep = ((type2_T *)stack->ga_data) + stack->ga_len - 1 - offset; typep->type_curr = type; typep->type_decl = &t_any; } /* * Get the current type from the type stack. If "offset" is zero the one at * the top, * if "offset" is one the type above that, etc. * Returns &t_unknown if there is no such stack entry. */ type_T * get_type_on_stack(cctx_T *cctx, int offset) { garray_T *stack = &cctx->ctx_type_stack; if (offset + 1 > stack->ga_len) return &t_unknown; return (((type2_T *)stack->ga_data) + stack->ga_len - offset - 1) ->type_curr; } /* * Get the declared type from the type stack. If "offset" is zero the one at * the top, * if "offset" is one the type above that, etc. * Returns &t_unknown if there is no such stack entry. */ type_T * get_decl_type_on_stack(cctx_T *cctx, int offset) { garray_T *stack = &cctx->ctx_type_stack; if (offset + 1 > stack->ga_len) return &t_unknown; return (((type2_T *)stack->ga_data) + stack->ga_len - offset - 1) ->type_decl; } /* * Get the member type of a dict or list from the items on the stack of "cctx". * The declared type is stored in "decl_type". * For a list "skip" is 1, for a dict "skip" is 2, keys are skipped. * Returns &t_void for an empty list or dict. * Otherwise finds the common type of all items. */ type_T * get_member_type_from_stack( int count, int skip, cctx_T *cctx) { garray_T *stack = &cctx->ctx_type_stack; type2_T *typep; garray_T *type_gap = cctx->ctx_type_list; int i; type_T *result; type_T *type; // Use "unknown" for an empty list or dict. if (count == 0) return &t_unknown; // Find the common type from following items. typep = ((type2_T *)stack->ga_data) + stack->ga_len; result = &t_unknown; for (i = 0; i < count; ++i) { type = (typep -((count - i) * skip) + skip - 1)->type_curr; if (check_type_is_value(type) == FAIL) return NULL; if (result != &t_any) common_type(type, result, &result, type_gap); } return result; } char * vartype_name(vartype_T type) { switch (type) { case VAR_UNKNOWN: break; case VAR_ANY: return "any"; case VAR_VOID: return "void"; case VAR_SPECIAL: return "special"; case VAR_BOOL: return "bool"; case VAR_NUMBER: return "number"; case VAR_FLOAT: return "float"; case VAR_STRING: return "string"; case VAR_BLOB: return "blob"; case VAR_JOB: return "job"; case VAR_CHANNEL: return "channel"; case VAR_LIST: return "list"; case VAR_DICT: return "dict"; case VAR_INSTR: return "instr"; case VAR_CLASS: return "class"; case VAR_OBJECT: return "object"; case VAR_TYPEALIAS: return "typealias"; case VAR_FUNC: case VAR_PARTIAL: return "func"; } return "unknown"; } /* * Return the type name of a List (list<type>) or Dict (dict<type>). * The result may be in allocated memory, in which case "tofree" is set. */ static char * type_name_list_or_dict(char *name, type_T *type, char **tofree) { char *member_free; char *member_name; if (type->tt_member->tt_type == VAR_UNKNOWN) member_name = type_name(&t_any, &member_free); else member_name = type_name(type->tt_member, &member_free); size_t len = STRLEN(name) + STRLEN(member_name) + 3; *tofree = alloc(len); if (*tofree == NULL) return name; vim_snprintf(*tofree, len, "%s<%s>", name, member_name); vim_free(member_free); return *tofree; } /* * Return the type name of a Class (class<name>) or Object (object<name>). * The result may be in allocated memory, in which case "tofree" is set. */ static char * type_name_class_or_obj(char *name, type_T *type, char **tofree) { char_u *class_name; if (type->tt_class != NULL) { class_name = type->tt_class->class_name; if (IS_ENUM(type->tt_class)) name = "enum"; } else class_name = (char_u *)"Unknown"; size_t len = STRLEN(name) + STRLEN(class_name) + 3; *tofree = alloc(len); if (*tofree == NULL) return name; vim_snprintf(*tofree, len, "%s<%s>", name, class_name); return *tofree; } /* * Return the type name of a function. * The result may be in allocated memory, in which case "tofree" is set. */ static char * type_name_func(type_T *type, char **tofree) { garray_T ga; int i; int varargs = (type->tt_flags & TTFLAG_VARARGS) ? 1 : 0; char *arg_free = NULL; ga_init2(&ga, 1, 100); if (ga_grow(&ga, 20) == FAIL) goto failed; STRCPY(ga.ga_data, "func("); ga.ga_len += 5; for (i = 0; i < type->tt_argcount; ++i) { char *arg_type; int len; if (type->tt_args == NULL) arg_type = "[unknown]"; else arg_type = type_name(type->tt_args[i], &arg_free); if (i > 0) { STRCPY((char *)ga.ga_data + ga.ga_len, ", "); ga.ga_len += 2; } len = (int)STRLEN(arg_type); if (ga_grow(&ga, len + 8) == FAIL) goto failed; if (varargs && i == type->tt_argcount - 1) ga_concat(&ga, (char_u *)"..."); else if (i >= type->tt_min_argcount) *((char *)ga.ga_data + ga.ga_len++) = '?'; ga_concat(&ga, (char_u *)arg_type); VIM_CLEAR(arg_free); } if (type->tt_argcount < 0) // any number of arguments ga_concat(&ga, (char_u *)"..."); if (type->tt_member == &t_void) STRCPY((char *)ga.ga_data + ga.ga_len, ")"); else { char *ret_free; char *ret_name = type_name(type->tt_member, &ret_free); int len; len = (int)STRLEN(ret_name) + 4; if (ga_grow(&ga, len) == FAIL) goto failed; STRCPY((char *)ga.ga_data + ga.ga_len, "): "); STRCPY((char *)ga.ga_data + ga.ga_len + 3, ret_name); vim_free(ret_free); } *tofree = ga.ga_data; return ga.ga_data; failed: vim_free(arg_free); ga_clear(&ga); return "[unknown]"; } /* * Return the name of a type. * The result may be in allocated memory, in which case "tofree" is set. */ char * type_name(type_T *type, char **tofree) { char *name; *tofree = NULL; if (type == NULL) return "[unknown]"; name = vartype_name(type->tt_type); switch (type->tt_type) { case VAR_LIST: case VAR_DICT: return type_name_list_or_dict(name, type, tofree); case VAR_CLASS: case VAR_OBJECT: return type_name_class_or_obj(name, type, tofree); case VAR_FUNC: return type_name_func(type, tofree); default: break; } return name; } /* * "typename(expr)" function */ void f_typename(typval_T *argvars, typval_T *rettv) { garray_T type_list; type_T *type; char *tofree; char *name; rettv->v_type = VAR_STRING; ga_init2(&type_list, sizeof(type_T *), 10); if (argvars[0].v_type == VAR_TYPEALIAS) { type = copy_type(argvars[0].vval.v_typealias->ta_type, &type_list); // A type alias for a class has the type set to VAR_OBJECT. Change it // to VAR_CLASS, so that the name is "typealias<class<xxx>>" if (type->tt_type == VAR_OBJECT) type->tt_type = VAR_CLASS; } else type = typval2type(argvars, get_copyID(), &type_list, TVTT_DO_MEMBER); name = type_name(type, &tofree); if (argvars[0].v_type == VAR_TYPEALIAS) { vim_snprintf((char *)IObuff, IOSIZE, "typealias<%s>", name); rettv->vval.v_string = vim_strsave((char_u *)IObuff); if (tofree != NULL) vim_free(tofree); } else { if (tofree != NULL) rettv->vval.v_string = (char_u *)tofree; else rettv->vval.v_string = vim_strsave((char_u *)name); } clear_type_list(&type_list); } /* * Check if the typval_T is a value type; report an error if it is not. * Note: a type, user defined or typealias, is not a value type. * * Return OK if it's a value type, else FAIL */ int check_typval_is_value(typval_T *tv) { if (tv == NULL) return OK; switch (tv->v_type) { case VAR_CLASS: { class_T *cl = tv->vval.v_class; char_u *class_name = (cl == NULL) ? (char_u *)"" : cl->class_name; if (cl != NULL && IS_ENUM(cl)) semsg(_(e_using_enum_as_value_str), class_name); else semsg(_(e_using_class_as_value_str), class_name); } return FAIL; case VAR_TYPEALIAS: semsg(_(e_using_typealias_as_value_str), tv->vval.v_typealias->ta_name); return FAIL; default: break; } return OK; } /* * Same as above, except check type_T. */ int check_type_is_value(type_T *type) { if (type == NULL) return OK; switch (type->tt_type) { case VAR_CLASS: if (type->tt_class != NULL && IS_ENUM(type->tt_class)) semsg(_(e_using_enum_as_value_str), type->tt_class->class_name); else semsg(_(e_using_class_as_value_str), type->tt_class == NULL ? (char_u *)"" : type->tt_class->class_name); return FAIL; case VAR_TYPEALIAS: // TODO: Not sure what could be done here to get a name. // Maybe an optional argument? emsg(_(e_using_typealias_as_var_val)); return FAIL; default: break; } return OK; } #endif // FEAT_EVAL